

# TRI-COUNTY 5 MW SOLAR PROJECT 7N904 IL-25, SOUTH ELGIN, IL 60177 13-NOV-2025



7N904 IL-25, SOUTH ELGIN, IL 60177 LATITUDE: 41.982650° LONGITUDE: -88.271192°

# PRELIMINARY - NOT FOR CONSTRUCTION

| DESCRIPTION                  |
|------------------------------|
| COVER PAGE                   |
| DRAWING NOTES                |
|                              |
| SITE LAYOUT - OVERALL        |
| SITE LAYOUT - PROJECT LAYOUT |
| SITE LAYOUT - POLE DETAIL    |
| AC SINGLE LINE DIAGRAM-1     |
| AUXILIARY STATION SLD        |
| AC CABLE SCHEDULE            |
|                              |
| SCADA SLD                    |
| DAS MONITORING SITE PLAN     |
| DAS MOUNTING DETAIL          |
| DAS TERMINATION DETAILS      |
|                              |
| TRAY LOCATION                |
|                              |
|                              |
|                              |

| DRAWING NO. | DESCRIPTION                         |
|-------------|-------------------------------------|
| E400        | ARRAY GROUNDING METHODOLOGY         |
| E401        | FENCE DETAIL & GROUNDING            |
|             |                                     |
| E500        | MV SKID ELEVATIONS                  |
| E501        | MV STATION CONDUIT PLAN             |
| E502        | TRANSFORMER SPECIFICATIONS          |
|             |                                     |
| E600        | MODULE SPECIFICATIONS               |
| E601        | SKIDDED STRING MV STATION SPECS     |
| E602        | BIG LEAD ASSEMBLY SPECIFICATIONS    |
| E604        | MV VOLT TRANSFORMER SKID SPECS      |
| E605        | LV WARNING LABELS & LAMACOIDS       |
|             |                                     |
| E700        | MV SET - OVERHEAD LINE SITEP PLAN   |
| E701        | MV SET - LOAD BREAK SWITCH POLE     |
| E703        | MV SET - METERING POLE              |
| E704        | MV SET - WARNING LABELS & LAMACOIDS |
| E705        | AC PAD GROUNDING GRID               |
|             |                                     |

### **SAFETY FIRST**

- Contractor shall be responsible for all safety precautions and measures on site. Contractor to submit health and safety plans and insurance before conducting any
- 2. Warning, DC voltage from the array is always present at the disconnect enclosure and the DC terminals of the inverter during daylight hours. All persons working or involved with this PV system are warned that the solar modules are energized whenever they are exposed to daylight
- Contractor shall adhere to a lock-out/tag-out protocol when working on equipment with the potential to be energized. Contractor to submit a copy of this protocol to Owner for approval.
- 4. Installation crew is to have a minimum of 1 master electrician on site at all times when electrical work is being performed.
- 5. It is recommended that installation crew always has a minimum of 2 people working together
- 6. Personal protective equipment appropriate for the hazards must be worn.

### **GENERAL NOTES**

- Contractor shall review all relevant construction specifications and documents such as land condition assessment report, structural report, geotechnical report and shop drawings. Contractor shall visit the construction sites prior to construction and formally submit all questions along with the project plan.
- 2. Prior to construction, contractor shall submit a construction schedule and project plan that complies with all construction requirements, scheduled inspections, commissioning, and utility shut down dates. Contractor shall not deviate from the design without written consent from the Owner.
- Drawings are diagrammatic and define the intent of the work. Locations of equipment, devices, cable trays, conduits, equipment supports, openings etc. are approximate and are subject to modifications caused by structural conditions and equipment provided by other contractors, subcontractors or the Owner. Contractor is responsible for coordination and planning
- Drawings shall not be scaled. They are diagrammatic and indicate the general arrangement of systems and equipment. Although size and location of equipment is drawn to scale wherever possible, contractor shall make use of all data in contract documents and verify information onsite.
- Contractor initiated changes shall be submitted in writing to the project manager for approval before making any changes. Deviation from the plans and specifications prior to approval places the contractor at risk.
- All work shall be in strict accordance with the listed and/or latest adopted editions of the following codes and standards:
  - The latest International Building Code
  - The latest National Electrical Code
  - The latest standard for electrical safety in the workplace NFPA 70E
  - All other applicable local codes and standards
- Contractor to obtain all permits required. Work must be inspected for compliance with all codes and subsequent inspection and certification fees to be paid by contractor. Contractor to deliver certifications of electrical and other inspections, or copies thereof, to the Owner upon completion.
- Contractor to provide adequate temporary electrical light and power for the project work of their trade if required
- Contractor shall be responsible for the removal of debris generated by their work and workers at the end of each working day and for general good housekeeping by their workers. Contractor shall provide required disposal containers.
- 10. Provide Owner with two sets of bound and indexed operation and maintenance manuals, with instructions for all electrical devices, equipment, appliances and system. Flash Drive is also acceptable.
- 11. Provide Owner with one set of reproducible contract drawings that have been revised and annotated to reflect the as-built conditions of the project.
- 12. Guarantee all work in writing to the Owner against any and all defects in material and workmanship for a period of one year from date of acceptance and perform all corrective work at no cost to the Owner.

### WIRING AND WIRING METHODS

- Contractor is responsible for performing and submitting all pulling calculations for conduit run. Install handholes as required to avoid hitting maximum allowable cable tension per cable
- Trenches shall not be left unattended unless the area is barricaded to restrict entry to the area.
- Contractor to seal all conduit and cable entries with fire retardant foam at enclosure entry points to minimize condensation and act as pest control.
- 4. All field wiring that is not color coded shall be tagged at both ends with permanent wire markers to identify polarity and ground.
- Wire color specifications:
  - neutral conductors shall be white or gray
- equipment grounding conductors shall be green
- 3-phase AC conductors shall be red(a), black (b) and blue(c)
- DC conductors shall be red(+) and black(-)
- When transitioning from free air to conductors in a conduit, a suitable fitting shall be used to prevent the entry of moisture.
- 7. Any metal shavings resulting from site work shall be cleaned from enclosure interiors, top surfaces of enclosure, roof surface, and any additional areas where oxidation or conductive metal shavings may cause rust, electrical short circuit or other damage.

- All DC materials shall be UL listed for minimum 1500V
- Connectors to be torqued per device listing or manufacturer's recommendations.
- 10. All copper termination AC and DC shall have kopr-shield or equivalent applied.
- 11. Bends shall not damage the raceway or significantly change the internal diameter of raceway
- 13. Module lead connectors shall be installed such that they are easily accessible and protected from exposure to direct sunlight or rain. They shall not be installed within tubing, conduit or module gaps.

12. All bare CU wires shall be installed to not come into contact with dissimilar metals

- 14. Install a 1/4" diameter nylon pull rope in all spare conduits.
- 15. Terminate all control wiring between pieces of equipment on field wiring boards. Label all control wires with terminal board and terminal number identification at both
- 16. A continuity check and DC meg-ohm test shall be performed on all AC and DC power cables. The meg-ohm test shall be performed between each pair of conductors and from each conductor to ground. Each test shall be performed for 15 seconds or until the insulation resistance value stabilizes. Contractor shall record all meg-ohm values and provide a report prior to energization.
- 17. Megger testing shall be performed at 1000VDC for all AC circuits and 600V or below and 600VDC for all DC circuits. A minimum of 250 megaohms resistance to ground is required. Do not megger conductors while attached to solar modules as this will damage the modules internal diodes.
- 18. All wiring shall be protected from any sharp edges to avoid damage to the wire insulation.
- 19. All PV wiring shall be bundled and secured to the racking structure with UV rated cable ties at a minimum of 4' spacing. All PV module connections shall be secured to the modules with Heyco SunRunner EZ clip or approved equal.
- 20. Verify utility phase sequence and coordinate installation of feeder conductors to provide correct phase sequence at inverter side of step-up transformer.
- 21. All conduits entering equipment to be equipped with bell ends to prevent abrasion
- 22. Unless marked as UV resistant, PVC is not approved for installation in locations subjected to direct sunlight and shall not be employed in any such location.
- 23. When transitioning underground PVC conduit to above ground RMC, IMC or EMT conduit, use 20 mil pipe wrap tape half-lapped from 6" past transition point on PVC to 6" above ground on metallic conduit. An expansion joint shall be used in the transition to above ground conduit where required.

### **GROUNDING**

- 1. Unless otherwise indicated, ground all exposed non-current carrying metallic part of electrical equipment, raceway systems, structures and the neutral of all wiring systems in accordance with NEC and other applicable regulations.
- 2. Where ground rods are indicated or used, they shall be copper clad, not less than <sup>3</sup>/<sub>4</sub>" in diameter, 10 feet long and driven full length into the earth. Make ground connections with exothermic welds or approved pressure clamps.
- All grounding connections shall be rated for direct burial, contractor is to supply supporting documentation in project submittal.
- All equipment grounding conductors installed should be copper only
- Module grounding must use tin-plate lay-in grounding lug by Ilsco or Burndy at approved module grounding location. See module installations manual for exact location. Drilling a hole or altering the module frame in any way may void the module warranty. If necessary, alternative grounding method must be approved by module manufacturer.
- The connection a module of this proposed solar system shall be so arranged that removal of a module from the string does not interrupt a grounded conductor to another string. Sets of modules interconnected as systems rated at 50 volts or less with or without blocking diodes and having a single overcurrent device shall be considered as a single string.
- Grounding system components shall be listed for their purpose, including but not limited to ground rods, grounding lugs and grounding clamps. Grounding devices exposed to the environment shall be rated for direct burial.

### REQUIRED SAFETY SIGNS AND LABELS

- Contractor to provide signage as required by NEC article 690
- All interactive system points of the interconnection with other sources shall be marked at an accessible location at the disconnection means
- 3. PV modules shall be marked to identify lead polarity, device ratings, and specifications for voltages, currents and power.
- 4. Required safety signs and labels shall be permanently attached by adhesive or other
- 5. Any switches, fuses or circuit breakers that can be energized in either direction shall be labeled as follows:
- Warning:
- Electrical shock hazard do not touch terminals
- Terminals on both the line and load sides may be energized in the open position.
- A marking specifying the photovoltaic power source rated as follows shall be provided at an accessible location at the disconnection means for the power source:
- Operating current (xx) amps Operating voltage (xx) volts
- Maximum system voltage (xx) volts
- Short circuit current (xx) amps

### **EQUIPMENT**

- Provide arc flash hazard warning labels complying with ANSI z535.4 on all equipment. Labels shall be applied on both inside and outside doors or barriers of outdoor equipment
- 2. Contractor shall review all component manuals prior to installation. It is advised that all component switches be placed in the OFF position and fuses removed prior to installation and should remain in OFF position until Owner approves installation and allows for commissioning activities.
- 3. All material and equipment procured by the contractor shall be certified by a nationally-recognized testing laboratory (ie UL) for the intended location and labeled for its application where such listing is applicable.
- All material and equipment shall be rated for outdoor installation and rated for it's
- 5. Submit shop drawings, product data sheets and wiring diagrams for approval for all electrical construction materials, devices, equipment, appliances and systems prior to ordering and installation. Ordering or installing prior to approval places the contractor at risk.
- 6. Contractor is responsible for mounting all equipment per the manufacturer's specifications. If specifications are not apparent, the contractor shall use diligent efforts to mount equipment such that it will be clean, level and in solid order to last the lifetime of the PV system.
- 7. Strut components used for support and anchoring shall be galvanized steel with galvanized or stainless steel hardware.
- 8. Doors providing access to parts normally energized at over 600V shall be padlocked closed. Removable panels providing access to such parts shall required tools for removal or be padlocked closed.
- 9. Medium voltage equipment installed outside of fences where accessible to the public shall comply with NEC requirements for tamper-proof construction.
- 10. Equipment shall be anchored to concrete pads or foundations per manufacturer's instructions using galvanized steel anchor bolts embedded in pad or with 6 inch deep epoxy anchor bolts. Anchor bolt size per manufacturer recommendation.
- 11. All openings into equipment shall be sealed with galvanized steel plate or screen to prevent entry of insects and rodents.
- 12. Verify the following:
  - Factory wiring diagram is accurate
  - Transformer is level
  - MV and LV conduits are separated and under their own compartment
  - Lock or conical nuts
  - Hardware is proper length
  - Core has not shifted in transportation

### **RACKING INSTALL**

1. All racking components shall be installed per the manufacturer's installation manual.

**MODULE INSTALL** 

- Refer to the module manual for details related to rigging, unpacking, handling, planning and installation.
- 2. Never leave a module unsupported or unsecured.

### **INVERTERS**

- Inverters shall be stored in a secure and clean location as per manufacturer recommendations and documentation. Inverters shall be protected from harsh environments, including excessive heat, cold, moisture, dust, snow, etc.
- 2. Inverters shall be transported by means outlined in the manufacturer documentation
- Inverters shall be attached to the racking system. Inverter shall be secured to the foundation using all provided mounting points. Reference manufacturer documentation for location and size of mounting points.
- 4. All disconnect switches shall be in the open position during installation and shall remain in the open position until proper testing, inspection and commissioning has been completed.
- Do not open the inverter cabinets when it is raining or when humidity exceeds 95%.
- All fasteners shall be torqued to manufacturer recommendations.
- 7. It is prohibited to modify the inverter or install equipment not explicitly recommended by the manufacturer. Do not store documents, instructions, plans, or any other foreign material not intended to be part of the system inside inverter cabinets.
- 8. Inverter performance may be affected if installed in direct sunlight, avoid if possible.
- 9. Module strings shall run horizontally whenever possible.
- 10. Inverters should have one mppt per row of modules on table where ever possible. I.e. if 3x18 tables are used, all top row string should be on one mppt, middle strings on a common mppt and likewise for the bottom strings.



### **GREENWOOD** SUSTAINABLE INFRASTRUCTURE

New York. New York 10016

**GSI DEVELOPMENT CORPORATION** CANADA: 140 Foundry Street, Unit A 134 East 40th Street

Baden, ON N3A 2P7 Phone: 519-804-9163 Toll Free: 1-866-961-8654

DISCLAIMER: All work shall be performed in compliance with local and federal

standards. Contractor responsible for verifying all dimensions.

Drawings not to be reproduced or used without GSI approval.

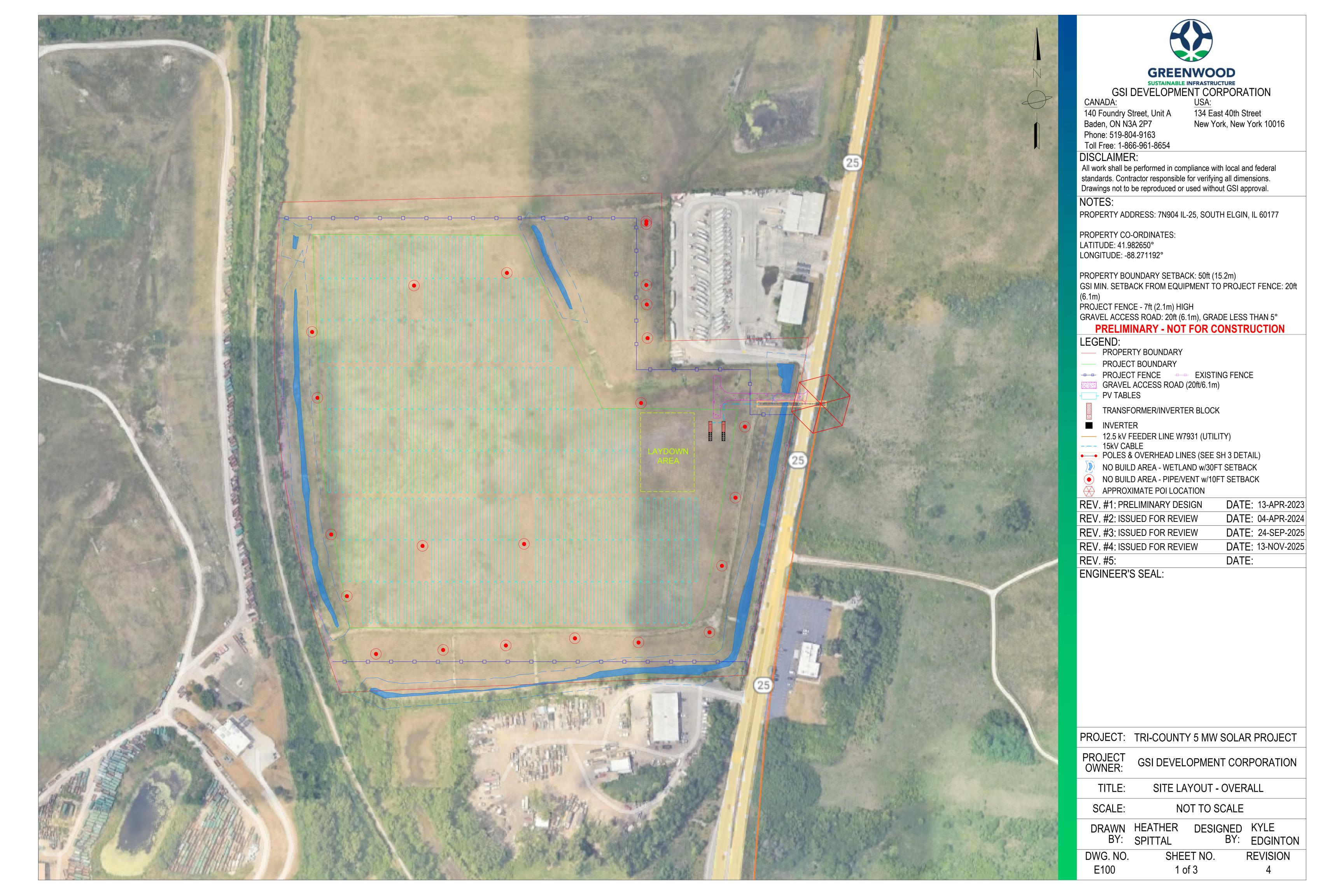
### NOTES:

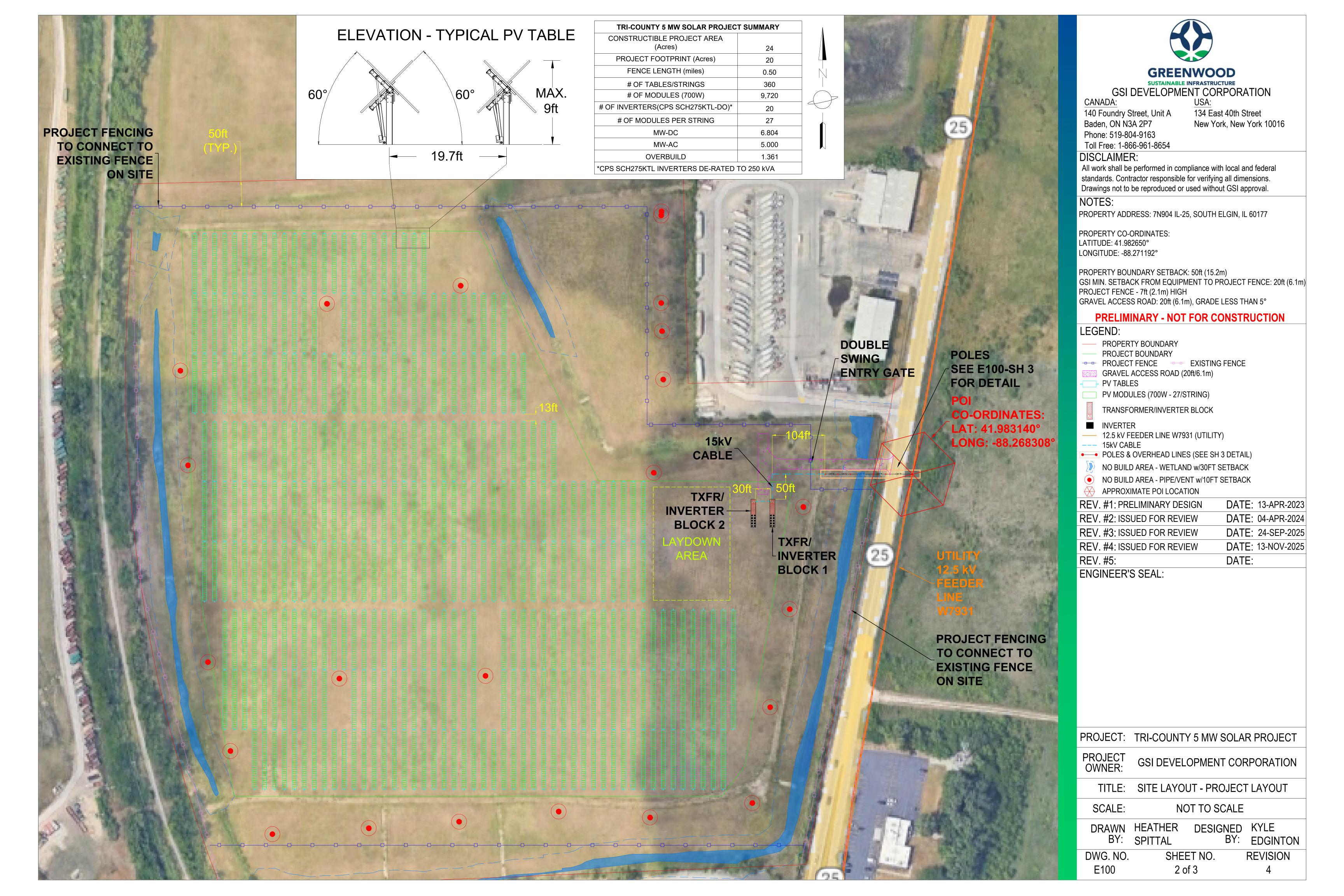
**PRELIMINARY - NOT FOR CONSTRUCTION** 

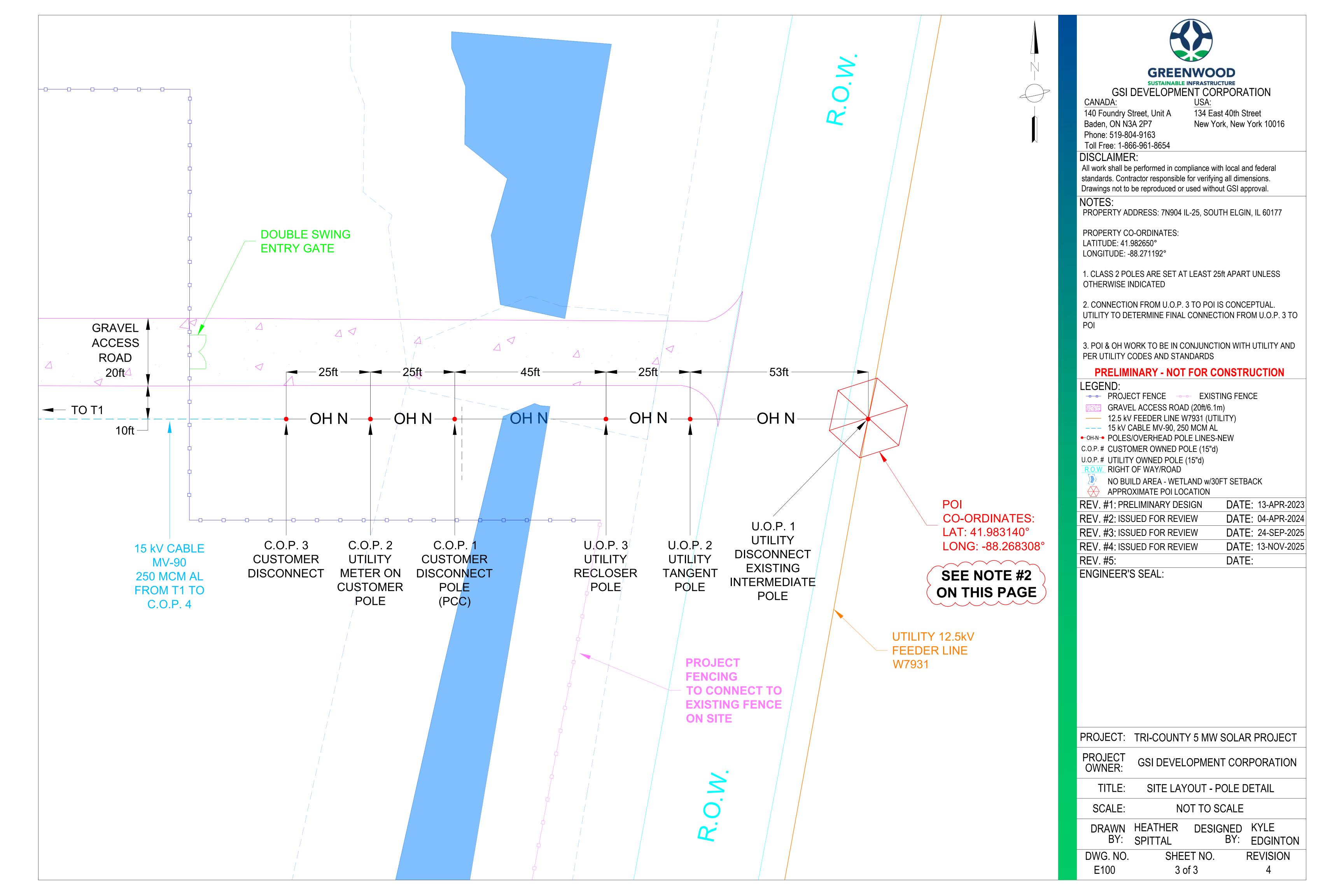
**LEGEND** 

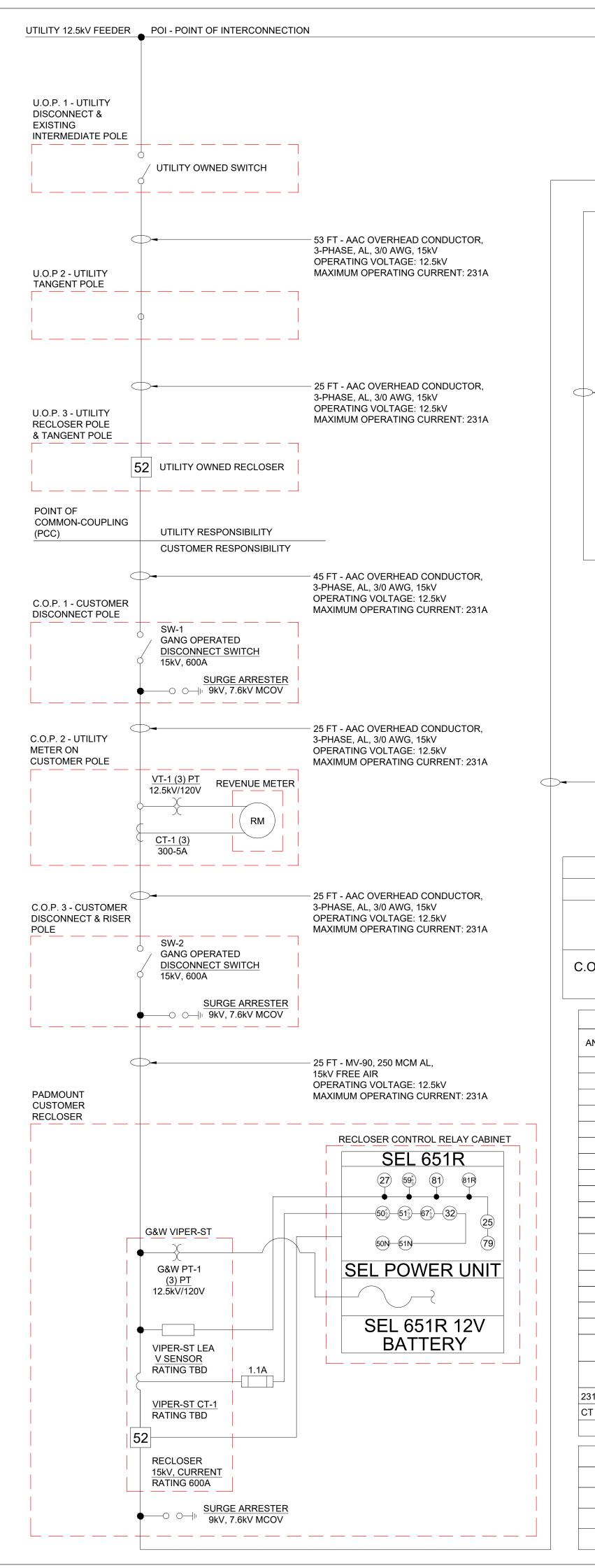
REV. #1: PRELIMINARY DESIGN DATE: 13-APR-2023 REV. #2: ISSUED FOR REVIEW DATE: 04-APR-2024 REV. #3: ISSUED FOR REVIEW DATE: 24-SEP-2025 **REV. #4: ISSUED FOR REVIEW** DATE: 13-NOV-2025 REV. #5: DATE: **ENGINEER'S SEAL:** 

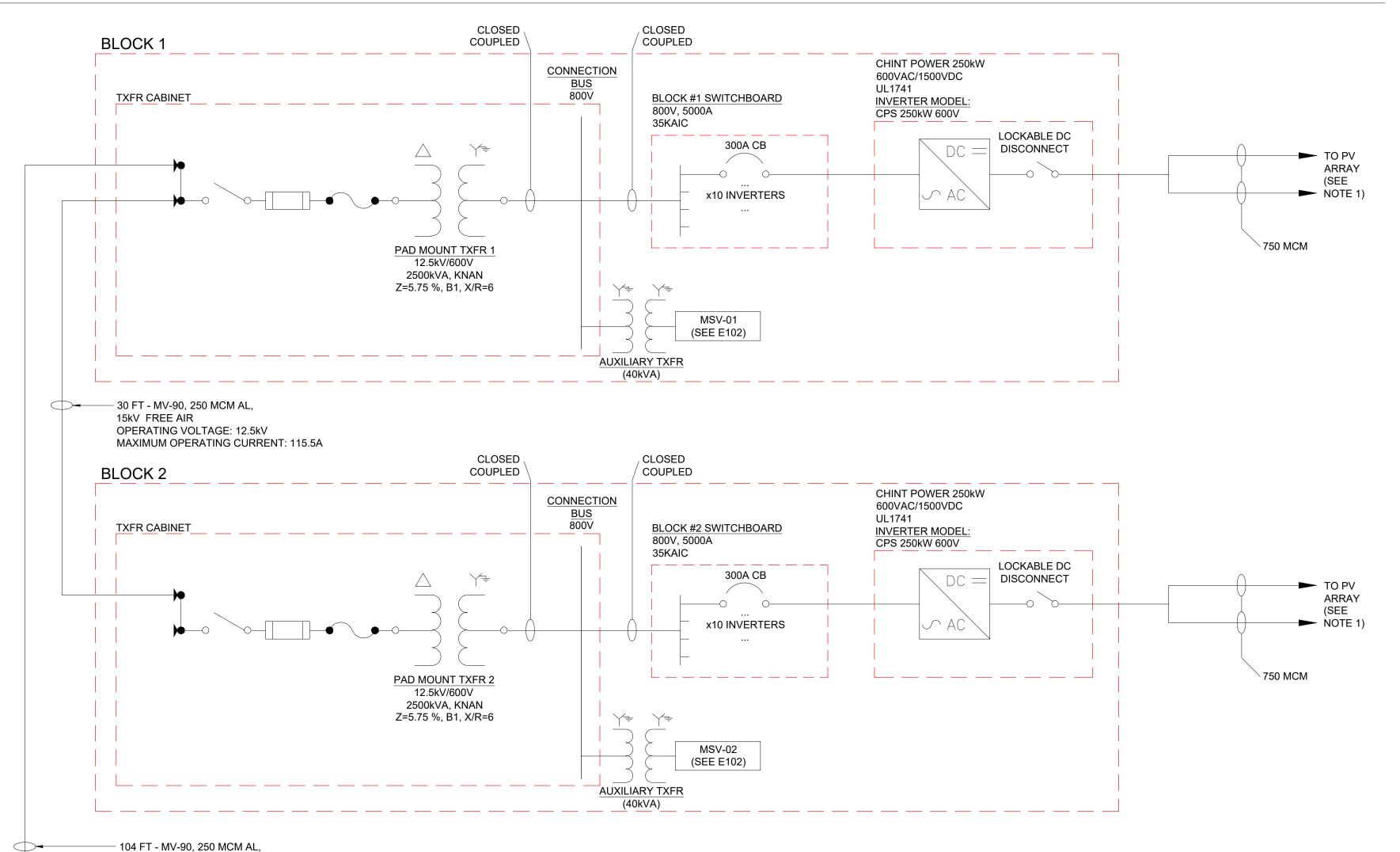
PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT


**PROJECT GSI DEVELOPMENT CORPORATION OWNER:** 


TITLE: DRAWING NOTES


SCALE: NOT TO SCALE HEATHER DESIGNED KYLE DRAWN


BY: EDGINTON SPITTAL DWG. NO. SHEET NO. **REVISION** 


C100 1 of 1











| TRI-COUNTY 5 MW SOLAR PROJECT CABLE SCHEDULE |                                                                                                              |             |  |  |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|
|                                              | TYPE/DESCRIPTION                                                                                             | LENGTH (ft) |  |  |  |  |  |  |  |
| U.O.P. 1 TO C.O.P. 3                         | AAC OVERHEAD CONDUCTOR, 3-PHASE, 3/0 AWG, AL 15kV, OPERATING VOLTAGE: 12.5kV MAXIMUM OPERATING CURRENT: 231A | 173         |  |  |  |  |  |  |  |
| C.O.P. 3 TO BLOCK 1 TXFR<br>CABINET          | 15kV CABLE, UG DIRECT BURIED, MV-90, 250 MCM<br>AL, 133% VOLTAGE RATED, UL LISTED, FULL<br>NEUTRAL           | 184         |  |  |  |  |  |  |  |

**OPERATING VOLTAGE: 12.5kV** 

MAXIMUM OPERATING CURRENT: 231A

|                  |            |        |       | SEL 651F                | R SETTIN     | IGS                        |               |                                  |
|------------------|------------|--------|-------|-------------------------|--------------|----------------------------|---------------|----------------------------------|
| ANSI ELEMENT#    | PICKUP     | REAL   | UNITS | LEVEL                   | DELAY (sec)  | TOTAL CLEAR<br>(TIME sec)* | CURVE         | DESCRIPTION                      |
| 27               | 0.67       | 3179   | V     | 44%                     | 0.11         | 0.16                       |               | Instantaneous UV                 |
| 27               | 0.76       | 3612   | V     | 50%                     | 0.95         | 1.00                       |               | Fast UV                          |
| 27               | 1.32       | 6285   | V     | 87%                     | 1.95         | 2.00                       |               | Slow UV                          |
| 59Q              | 0.18       | 867    | V     | 12%                     | 1.95         | 2.00                       |               | Negative Seq. OV                 |
| 59               | 1.69       | 8019   | V     | 111%                    | 1.95         | 2.00                       |               | Slow OV                          |
| 59               | 1.82       | 8670   | V     | 120%                    | 0.11         | 0.16                       |               | Fast OV                          |
| 59G              | 0.19       | 939    | V     | 13%                     | 1.95         | 2.00                       |               | Neutral Shift                    |
| 81U-1            | 56.50      | 56.50  | Hz    | 94%                     | 0.11         | 0.16                       |               | Fast UF                          |
| 81U-2            | 58.50      | 58.50  | Hz    | 98%                     | 299.95       | 300.00                     |               | Slow UF                          |
| 810-1            | 62.00      | 62.00  | Hz    | 103%                    | 0.11         | 0.16                       |               | Fast OF                          |
| 810-2            | 61.20      | 61.20  | Hz    | 102%                    | 299.95       | 300.00                     |               | Slow OF                          |
| 51Q              | 0.21       | 42     | Α     | 20%                     | 1.95         | 2.00                       | U4            | Negarive Seq. TOC                |
| 51N              | 0.32       | 69.3   | Α     | 30%                     | 1.95         | 2.00                       | U4            | Timed Neutral OC                 |
| 50P              | 16.40      | 3465   | Α     | 1500%                   | 0.00         | 0.05                       |               | Instant. Phase OC                |
| 51P              | 1.64       | 346.5  | Α     | 150%                    | 1.95         | 2.00                       | U4            | Timed Phase OC                   |
| 79               | 1.44       | 219.45 | V     | 95%                     | 299.95       | 300.00                     |               | Min Reclosing Voltage Value      |
| 79               | 1.60       | 242.55 | V     | 105%                    | 299.95       | 300.00                     |               | Max Reclosing Voltage Value      |
| 79               | 59.50      | 59.50  | Hz    | 99%                     | 299.95       | 300.00                     |               | Min Reclosing Frequency<br>Value |
| 79               | 60.50      | 60.50  | Hz    | 101%                    | 299.95       | 300.00                     |               | Max Reclosing Frequency<br>Value |
| 231A USED FOR 50 | /51 ELEMEN | NTS    |       | 7200V USE               | D FOR 27/5   | 9 ELEMENTS                 |               | 1                                |
| CT RATIO FACTOR  | = 200      |        |       | LEA RATIO FACTOR = 5000 |              |                            |               |                                  |
|                  |            |        |       | * total clear           | time include | es 0.05 sec breake         | er opening ti | me                               |

| TR           | TRI-COUNTY 5 MW SOLAR PROJECT EQUIPMENT SPECIFICATION |                        |          |  |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------|------------------------|----------|--|--|--|--|--|--|--|--|
| EQUIPMENT    | MANUFACTURER                                          | MODEL                  | SIZE     |  |  |  |  |  |  |  |  |
| INVERTER     | CHINT POWER SYSTEMS                                   | CPS SKIDDED MV STATION | 2.5/3 MW |  |  |  |  |  |  |  |  |
| SOLAR MODULE | CANADIAN SOLAR                                        | TOPBiHiKu7 - CS7N      | 700W     |  |  |  |  |  |  |  |  |
| NOTE:        | *CPSSCH275KTL-DO INVERTERS [                          | DE-RATED TO 250 kVA    |          |  |  |  |  |  |  |  |  |

| TRI-COUNTY 5 MW SOLAR PROJEC      | T SUMMARY  |
|-----------------------------------|------------|
| CONSTRUCTIBLE PROJECT AREA        |            |
| (Acres)                           | 24         |
| PROJECT FOOTPRINT (Acres)         | 20         |
| FENCE LENGTH (miles)              | 0.50       |
| # OF TABLES/STRINGS               | 360        |
| # OF MODULES (700W)               | 9,720      |
| # OF INVERTERS(CPS SCH275KTL-DO)* | 20         |
| # OF MODULES PER STRING           | 27         |
| MW-DC                             | 6.804      |
| MW-AC                             | 5.000      |
| OVERBUILD                         | 1.361      |
| CPS SCH275KTL INVERTERS DE-RATED  | TO 250 kVA |

| INVERTER IN    | NTERNAL   | PROTEC   | TIVE SET | TINGS: UL17                | 41-SA COMPLIANT                  |
|----------------|-----------|----------|----------|----------------------------|----------------------------------|
| ANSI ELEMENT # | PICKUP    | UNITS*   | LEVEL    | TOTAL CLEAR<br>(TIME sec)* | DESCRIPTION                      |
| 27             | 352.0     | V        | 44%      | 0.16                       | Instantaneous UV                 |
| 27             | 400.0     | V        | 50%      | 0.80                       | Fast UV                          |
| 27             | 696.0     | V        | 87%      | 1.60                       | Slow UV                          |
| 59             | 888.0     | V        | 111%     | 0.80                       | Slow OV                          |
| 59             | 960.0     | V        | 120%     | 0.16                       | Fast OV                          |
| 81U-1          | 56.50     | Hz       | 94%      | 0.16                       | Fast UF                          |
| 81U-2          | 58.50     | Hz       | 98%      | 1.60                       | Slow UF                          |
| 810-1          | 62.00     | Hz       | 103%     | 0.16                       | Fast OF                          |
| 810-2          | 61.20     | Hz       | 102%     | 1.60                       | Slow OF                          |
| 79             | 760.0     | V        | 95%      | 300.00                     | Min Reclosing Voltage<br>Value   |
| 79             | 840.0     | V        | 105%     | 300.00                     | Max Reclosing Voltage<br>Value   |
| 79             | 59.6      | Hz       | 99%      | 300.00                     | Min Reclosing Frequency<br>Value |
| 79             | 60.5      | Hz       | 101%     | 300.00                     | Max Reclosing Frequency<br>Value |
|                | INVERTER  | R INTERN | AL OPER  | ATION SETT                 | NGS                              |
|                |           |          |          |                            |                                  |
|                |           |          |          |                            |                                  |
| PF Set Point   | 1.00      |          |          |                            | Power Factor Control             |
| Var Control    | OFF       |          |          |                            | Reactive Power Control           |
| Ramp Rate      | 10%/1 sec |          |          |                            | dkw / dt                         |
| Freq Control   | OFF       |          |          |                            | Speed Control                    |

\* voltages based off 800V Line to Line



### GREENWOOD SUSTAINABLE INFRASTRUCTURE

**GSI DEVELOPMENT CORPORATION** 

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

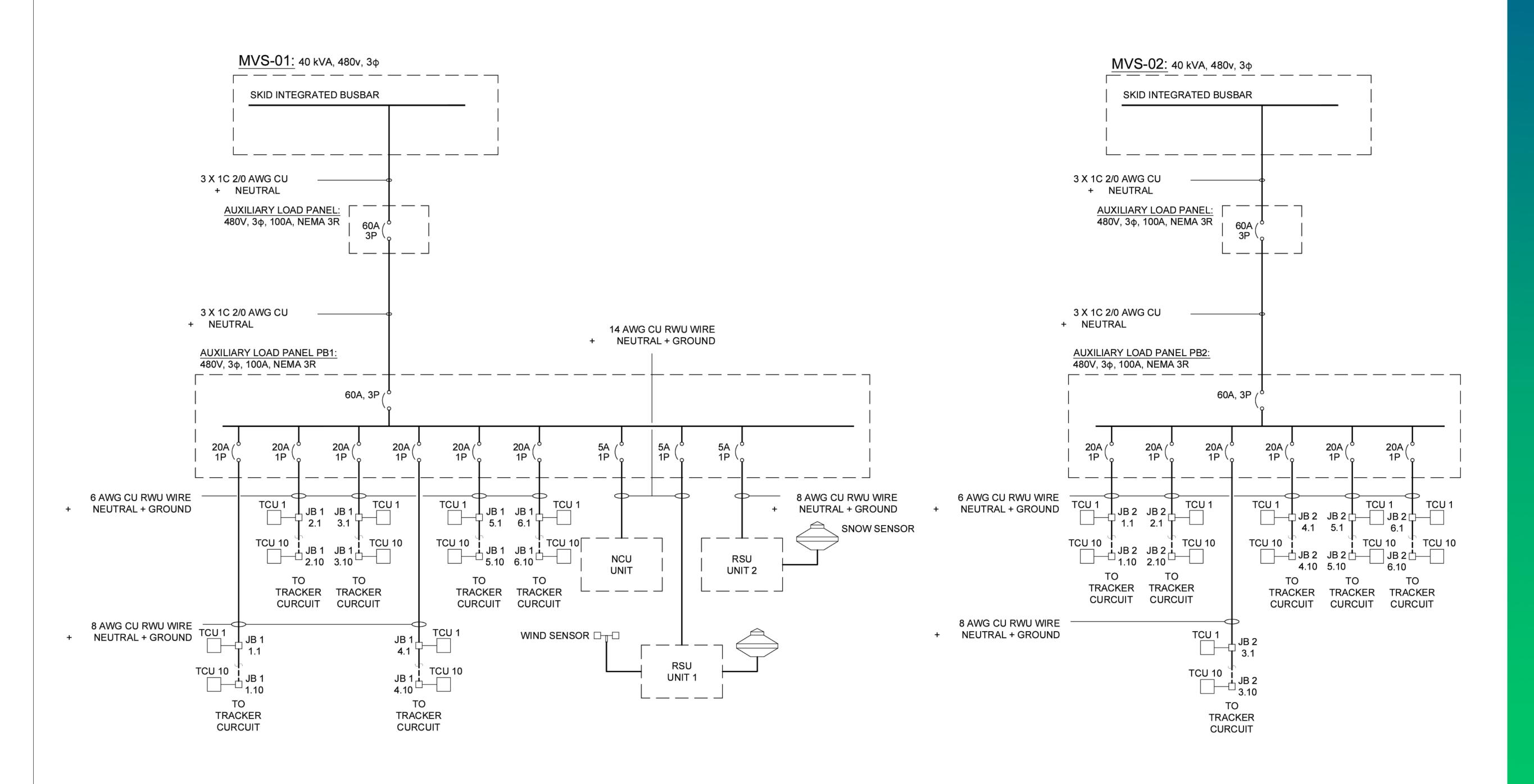
### NOTES:

PROPERTY ADDRESS: 7N904 IL-25, SOUTH ELGIN, IL 60177

- 1. EACH INVERTER IS 18 STRINGS VIA BIG LEAD ASSEMBLEY (BLA)
- 2. 1 STRING PER TABLE (27 MODULES PER STRING)
- 3. DRAWING SUBJECT TO CHANGE BASED ON SITE CONDITIONS AND UTILITY REQUIREMENTS
- 4. EQUIPMENT ON UTILITY POLES WILL BE SUPPLIED & INSTALLED BY THE CUSTOMER (GSI), EQUIPMENT ON CUSTOMER POLES IS CUSTOMER OWNED.
- 5. THE GROUND GRID WILL BE CONSTRUCTED 4/0 BARE CONDUCTOR WITH A MAXIMUM RESISTANCE TO GROUND OF 5 ohms.
- THREE PHASE GANG OPERATED SWITCH TO BE MINIMUM OF 600A, 12.5kV, 20kAIC LOCKABLE IN THE OPEN POSITION

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |


PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT
PROJECT GSI DEVELOPMENT CORPORATION

TITLE: AC SLD - 1

SCALE: NOT TO SCALE

DRAWN HEATHER DESIGNED KYLE
BY: SPITTAL BY: EDGINTON

DWG. NO. SHEET NO. REVISION E101 1 of 1 4





### **GREENWOOD** SUSTAINABLE INFRASTRUCTURE

GSI DEVELOPMENT CORPORATION CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

134 East 40th Street New York, New York 10016

### DISCLAIMER:

Phone: 519-804-9163

Toll Free: 1-866-961-8654

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval. NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |

PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT PROJECT GSI DEVELOPMENT CORPORATION OWNER: **AUXILIARY STATION SLD** SCALE: NOT TO SCALE DRAWN HEATHER DESIGNED KYLE BY: EDGINTON SPITTAL SHEET NO. DWG. NO. **REVISION** 

1 of 1

| Inverter Cable Schedule |                |                 |                       |                       |                              |                      |                   |                                         |         |                       |                  |                                           |                             |
|-------------------------|----------------|-----------------|-----------------------|-----------------------|------------------------------|----------------------|-------------------|-----------------------------------------|---------|-----------------------|------------------|-------------------------------------------|-----------------------------|
| From Inverter           | То             | Inverter Part # | Operating Voltage (V) | Operating Current (A) | # of PV Strings per inverter | Total Run Length (m) | Bus Bar and Type  | Conductor Ampacity (after derating) (A) | Isc (A) | Fuse/Breaker Size (A) | Voltage Drop (V) | Conduit Size and Type Per<br>Parallel Set | EGC Size Per Paralle<br>Set |
| INV 1                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 2                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 3                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 4                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 5                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 6                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 7                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 8                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 9                   | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 10                  | Switchboard #1 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 11                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 12                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 13                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 14                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 15                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 16                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 17                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 18                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 19                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |
| INV 20                  | Switchboard #2 | CPS 250kW-600   | 600                   | 240.56                | 18                           | N/A                  | Close Coupled, AL | #N/A                                    | 248.125 | 250                   | #N/A             | #N/A                                      | #N/A                        |

|                | Low Voltage Cable Schedule                                          |     |        |                  |                   |                                         |         |               |                  |                                             |      |  |
|----------------|---------------------------------------------------------------------|-----|--------|------------------|-------------------|-----------------------------------------|---------|---------------|------------------|---------------------------------------------|------|--|
| From           | To Operating Voltage (V) Operating Current (A) Total Run Length (m) |     |        | Bus Bar and Type | Raceway Type      | Conductor Ampacity (after derating) (A) | Isc (A) | Fuse Size (A) | Voltage Drop (V) | Conduit Size and Type<br>(Per Parallel Set) |      |  |
| Switchboard #1 | Transformer #1                                                      | 600 | 2405.6 | N/A              | Close Coupled, AL | Cable Tray                              | #N/A    | 2481.25       | 2500             | #N/A                                        | #N/A |  |
| Switchboard #2 | Transformer #2                                                      | 600 | 2405.6 | N/A              | Close Coupled, AL | Cable Tray                              | #N/A    | 2481.25       | 2500             | #N/A                                        | #N/A |  |

|                | Medium Voltage Cable Schedule |                       |                       |                                                                                                               |                        |     |        |               |                     |                                             |                                |  |
|----------------|-------------------------------|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------|------------------------|-----|--------|---------------|---------------------|---------------------------------------------|--------------------------------|--|
| From           | То                            | Operating Voltage (V) | Operating Current (A) | perating Current (A) Total Run Length (m) Wire Gauge and Type Conductor Ampacity (after derating) (A) Isc (A) |                        |     |        | Fuse Size (A) | Voltage Drop<br>(V) | Conduit Size and Type<br>(Per Parallel Set) | EGC Size<br>(Per Parallel Set) |  |
| Transformer #2 | Transformer #1                | 12500                 | 115.4688              | 30                                                                                                            | 250 MCM MV-90 Aluminum | 305 | 119.1  | 160           | 0.00%               | 1/2 " Schedule 40 PVC conduit               | 1/3 Concentric Neutral Copper  |  |
| Transformer #1 | Recloser #1                   | 12500                 | 230.9376              | 50                                                                                                            | 250 MCM MV-90 Aluminum | 305 | 214.38 | 300           | 0.00%               | 1/2 " Schedule 40 PVC conduit               | 1/3 Concentric Neutral Copper  |  |

|                             | Medium Voltage Cable Schedule |                       |                       |                      |                      |                                         |         |               |                     |                                             |                                |
|-----------------------------|-------------------------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------------------------|---------|---------------|---------------------|---------------------------------------------|--------------------------------|
| From                        | То                            | Operating Voltage (V) | Operating Current (A) | Total Run Length (m) | Wire Gauge and Type  | Conductor Ampacity (after derating) (A) | Isc (A) | Fuse Size (A) | Voltage Drop<br>(V) | Conduit Size and Type<br>(Per Parallel Set) | EGC Size<br>(Per Parallel Set) |
| Recloser #1                 | Load Break Switch #1          | 12499.55539           | 230.9376              | 25                   | 3/0 AWG AAC Aluminum | 297                                     | 214.38  | 300           | 0.00%               | #N/A                                        | #3 AWG Copper                  |
| Load Break Switch #1        | Primary Metering Cabinet #1   | 12499.22467           | 230.9376              | 25                   | 3/0 AWG AAC Aluminum | 297                                     | 214.38  | 300           | 0.00%               | #N/A                                        | #3 AWG Copper                  |
| Primary Metering Cabinet #1 | Load Break Switch #2          | 12498.89394           | 230.9376              | 25                   | 3/0 AWG AAC Aluminum | 297                                     | 214.38  | 300           | 0.00%               | #N/A                                        | #3 AWG Copper                  |
| Load Break Switch #2        | Recloser #2                   | 12498.56321           | 230.9376              | 25                   | 3/0 AWG AAC Aluminum | 297                                     | 214.38  | 300           | 0.00%               | #N/A                                        | #3 AWG Copper                  |
| Recloser #2                 | Load Break Switch #3          | 12498.23247           | 230.9376              | 30                   | 3/0 AWG AAC Aluminum | 297                                     | 214.38  | 300           | 0.00%               | #N/A                                        | #3 AWG Copper                  |



CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163 Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

### NOTES:

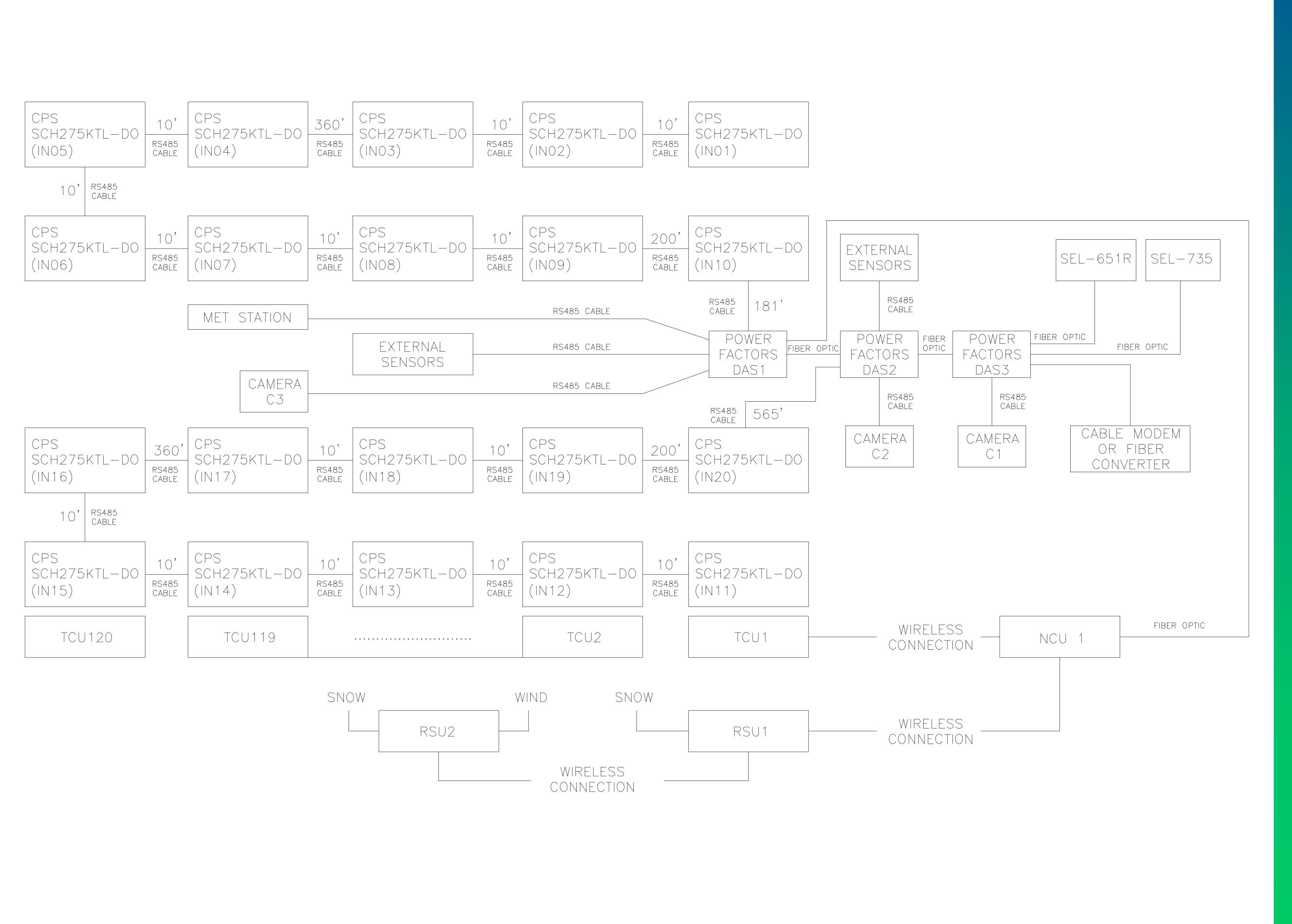
PROPERTY ADDRESS: 7N904 IL-25, SOUTH ELGIN, IL 60177

- 1. CONTRACTOR TO VERIFY ALL CABLE LENGTHS ARE ACCURATE AND NOTIFY GSI OF ANY INCONSISTENCIES.
- 2. LOW VOLTAGE CABLES SIZED PER AMPACITY CHARTS PRESENTED IN NEC TABLE 310.15(B). APPROPRIATE DERATE FACTORS APPLIED USING TABLES 310.15(B)(3)(a) FOR MULTIPLE PARALLEL SETS OF CONDUCTORS IN RACEWAYS AND TABLE 310.15(B)(2)(b) FOR AMBIENT TEMPERATURE.
- 3. MEDIUM VOLTAGE CABLES SIZED PER AMPACITY CHARTS PRESENTED IN NEC TABLE 310.60(C). APPROPRIATE DERATE FACTORS APPLIED USING TABLE 310.60(C)(4) AND ITS ASSOCIATED FORMULA FOR AMBIENT TEMPERATURE.

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |

PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT


PROJECT GSI DEVELOPMENT CORPORATION

TITLE: AC CABLE SCHEDULE

SCALE: NOT TO SCALE

DRAWN HEATHER DESIGNED KYLE
BY: SPITTAL BY: EDGINTON

DWG. NO. SHEET NO. REVISION
E104 1 of 1 4





<u>CANADA:</u> 140 Foundry Street, Unit A Baden, ON N3A 2P7

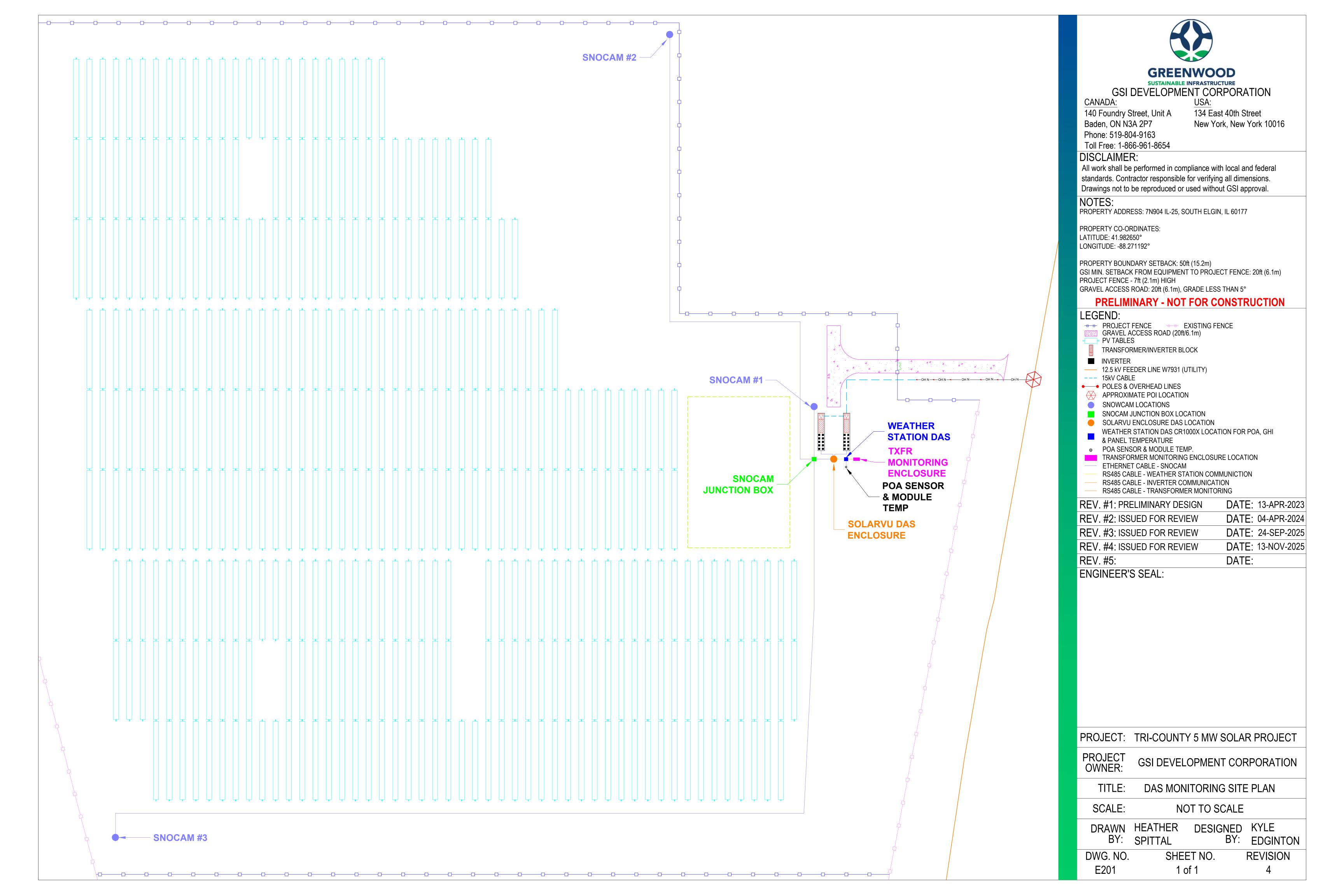
Phone: 519-804-9163

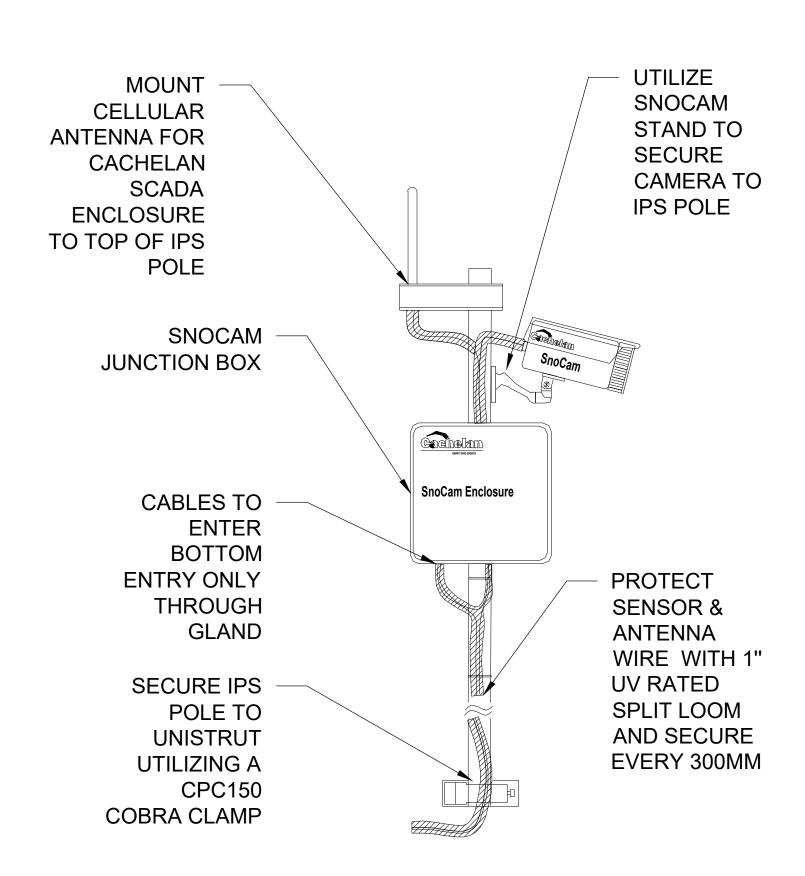
Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

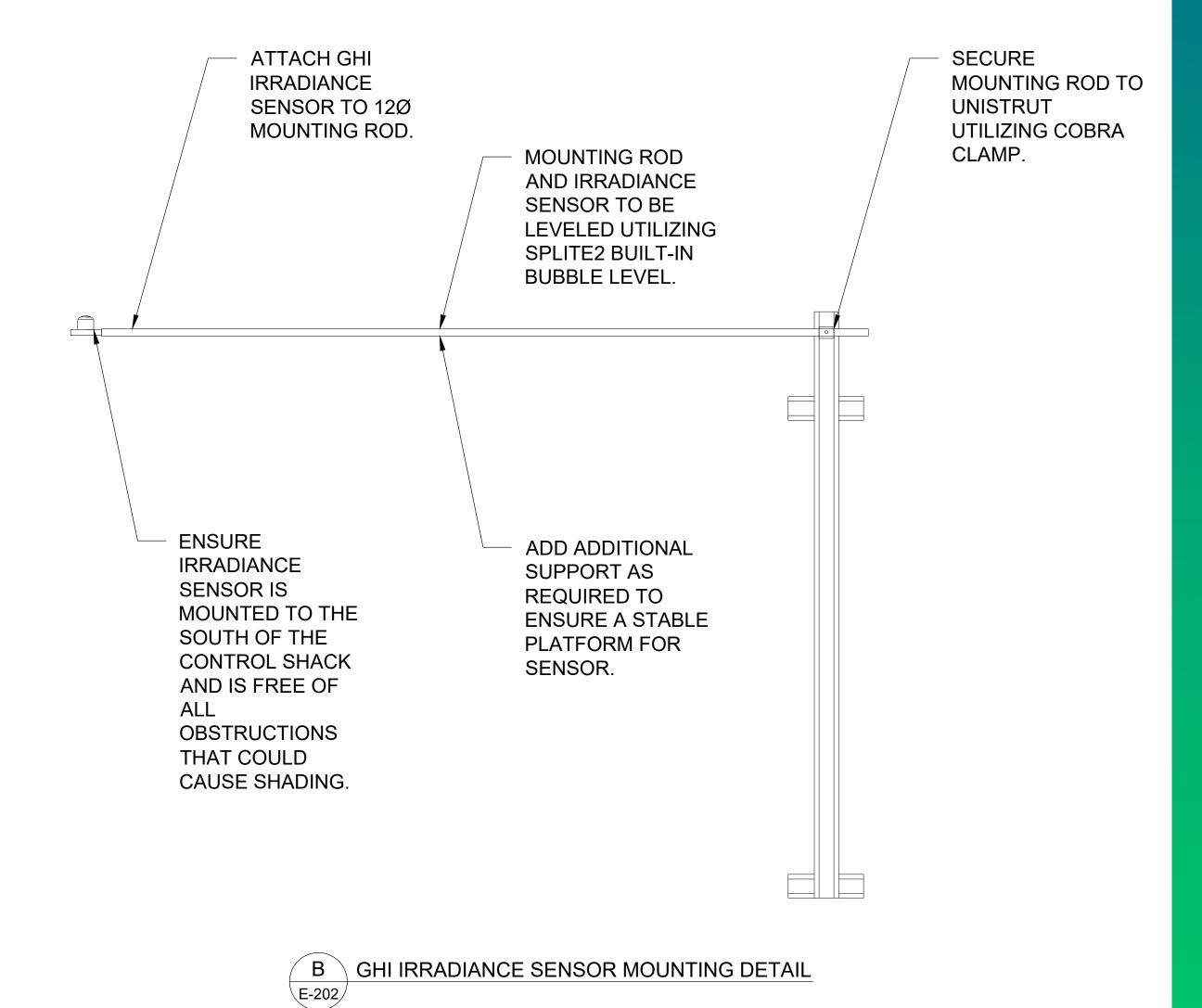
### **DISCLAIMER:**

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


### NOTES:


- 1. NCU NETWORK CONTROL UNIT
- 2. RSU REMOTE SENSOR UNIT
- 3. TCU TRACKER CONTROL UNIT
- 4. WIRES BETWEEN "CPS SCH275KTL-DO" AND POWER FACTORS BLOCK WILL BE RS-485
- 5. EXTERNAL SENSORS: BOM, ALBEDOMETER, GHI, PYRANOMETER

### PRELIMINARY - NOT FOR CONSTRUCTION


| REV. #5:                    | DATE:             |
|-----------------------------|-------------------|
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |

| PROJECT:          | TRI-COUNT          | Y 5 MW SOLA     | R PROJECT        |
|-------------------|--------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVEL          | OPMENT CO       | RPORATION        |
| TITLE:            | ļ                  |                 |                  |
| SCALE:            | N                  | OT TO SCALE     |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHE                | ET NO.          | REVISION         |
| E200              | 1                  | of 1            | 4                |









GPEENWOO

# GREENWOOD SUSTAINABLE INFRASTRUCTURE GSI DEVELOPMENT CORPORATION

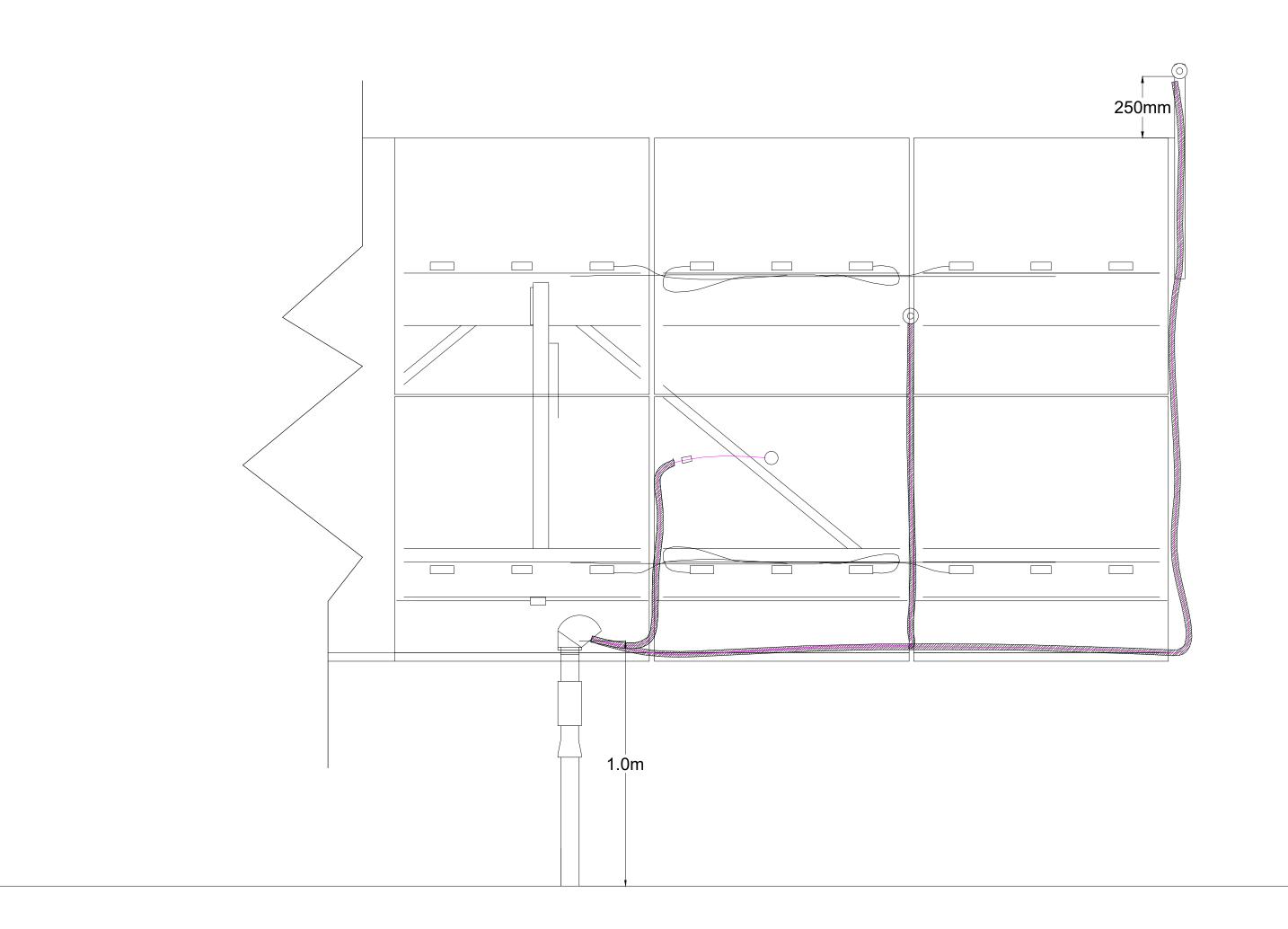
CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


### NOTES:

1. CONTRACTOR TO LEAVE PRE-TERMINATED CABLES UNCUT (FACTORY CALIBRATED)

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
|                             |                   |

| PROJECT:          | TRI-COUNT                   | Y 5 MW SOLA     | R PROJECT        |  |
|-------------------|-----------------------------|-----------------|------------------|--|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION |                 |                  |  |
| TITLE:            | DAS MO                      | AILS            |                  |  |
| SCALE:            | NO                          | OT TO SCALE     |                  |  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL          | DESIGNED<br>BY: | KYLE<br>EDGINTON |  |
| DWG. NO.          | SHEET NO.                   |                 | REVISION         |  |
| E202              | 1 of 2                      |                 | 4                |  |
|                   |                             |                 |                  |  |



C POA IRRADIANCE SENSORS AND

E-202 MODULE TEMP SENSOR MOUNTING DETAIL



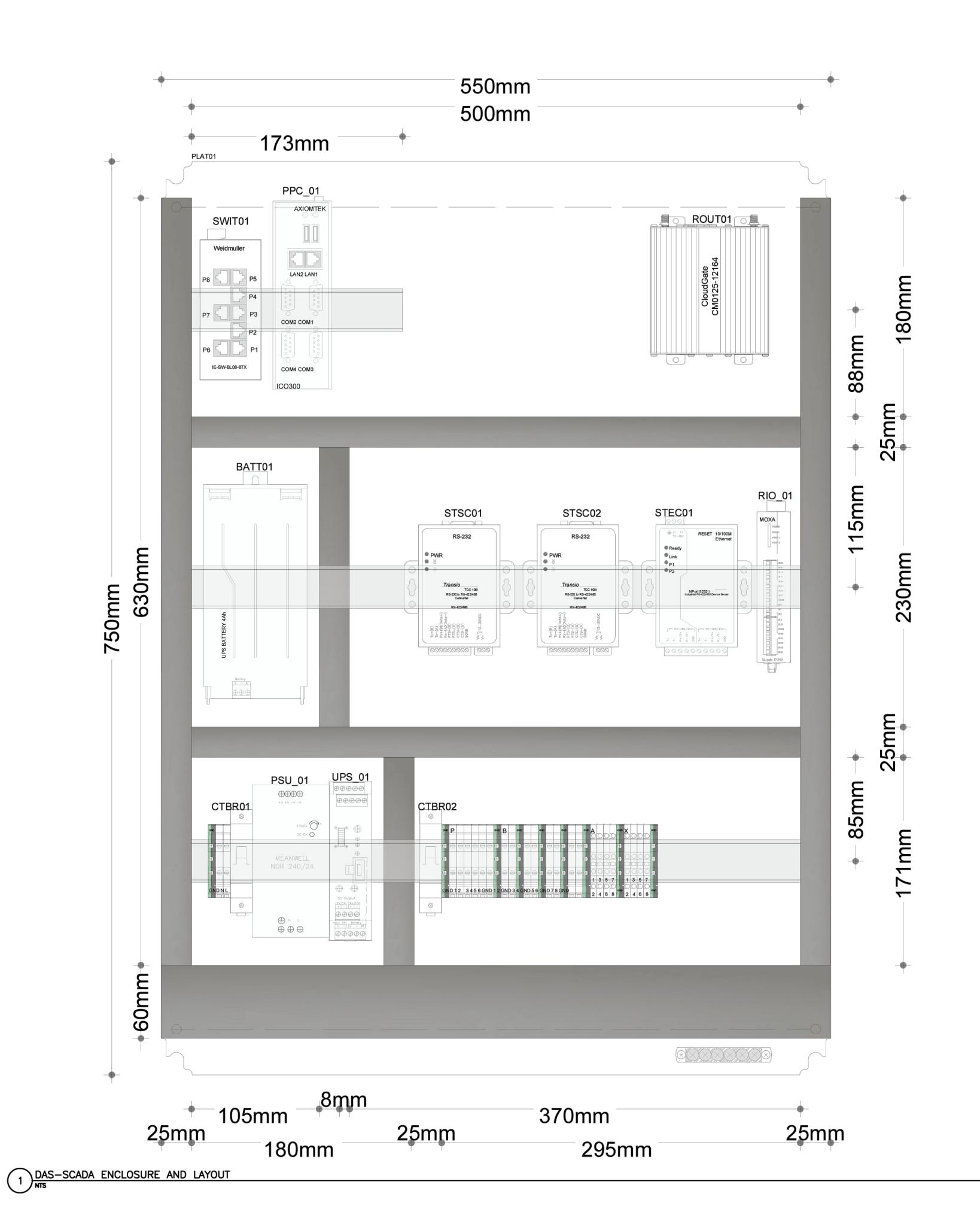
# GREENWOOD SUSTAINABLE INFRASTRUCTURE GSI DEVELOPMENT CORPORATION

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

134 East 40th Street New York, New York 10016

# Toll Free: 1-866-961-8654 DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


### NOTES:

1. CONTRACTOR TO LEAVE PRE-TERMINATED CABLES UNCUT (FACTORY CALIBRATED)

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-202  |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-202  |
| REV. #5:                    | DATE:             |

| PROJECT:          | TRI-COUNT          | Y 5 MW SOLA     | R PROJECT        |
|-------------------|--------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVEL          | OPMENT CO       | RPORATION        |
| TITLE:            | DAS MO             | DUNTING DET     | TAILS            |
| SCALE:            | NO                 | OT TO SCALE     |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHE                | ET NO.          | REVISION         |
| E202              | 2 (                | of 2            | 4                |



| MSSU PANEL |                              |                                   |  |  |
|------------|------------------------------|-----------------------------------|--|--|
| Tag        | Model/Type                   | Description                       |  |  |
| CABT01     | Schneider Thalassa NSYPLM86G | SCADA Cabinet                     |  |  |
| PLAT01     | Schneider Electric NSYMM86   | Mounting Plate                    |  |  |
| ROUT01     | CloudGate Modem CM0125-12164 | 4G Router/Modem                   |  |  |
| IPC_01     | ICO300                       | SCADA Controller                  |  |  |
| SWIT01     | Weidmuller IE-SW-BL08-8TX    | Unmanaged Switch                  |  |  |
| STSC01     | Moxa TCC 100I                | RS232 to RS485 Converter          |  |  |
| STSC02     | Moxa TCC 100I                | RS232 to RS485 Converter          |  |  |
| STEC01     | Moxa NPORT 5232I             | RS485 to Ethernet Converter       |  |  |
| RIO_01     | Moxa ioLogic E1242           | Remote I/O (8xAls, 4xDls, 4xDlOs) |  |  |
| CTBR01     | Schneider IK60N C10A         | AC Circuit Breaker                |  |  |
| CTBR02     | Schneider A9N61505           | DC Circuit Breaker                |  |  |
| PSU_01     | Meanwell NDR 240-24          | Cabinet PSU                       |  |  |
| UPS_01     | Phoenix Contact Quint UPS    | Cabinet UPS                       |  |  |
| BATT01     | Phoenix Contact Quint 4 AH   | Cabinet UPS Battery               |  |  |

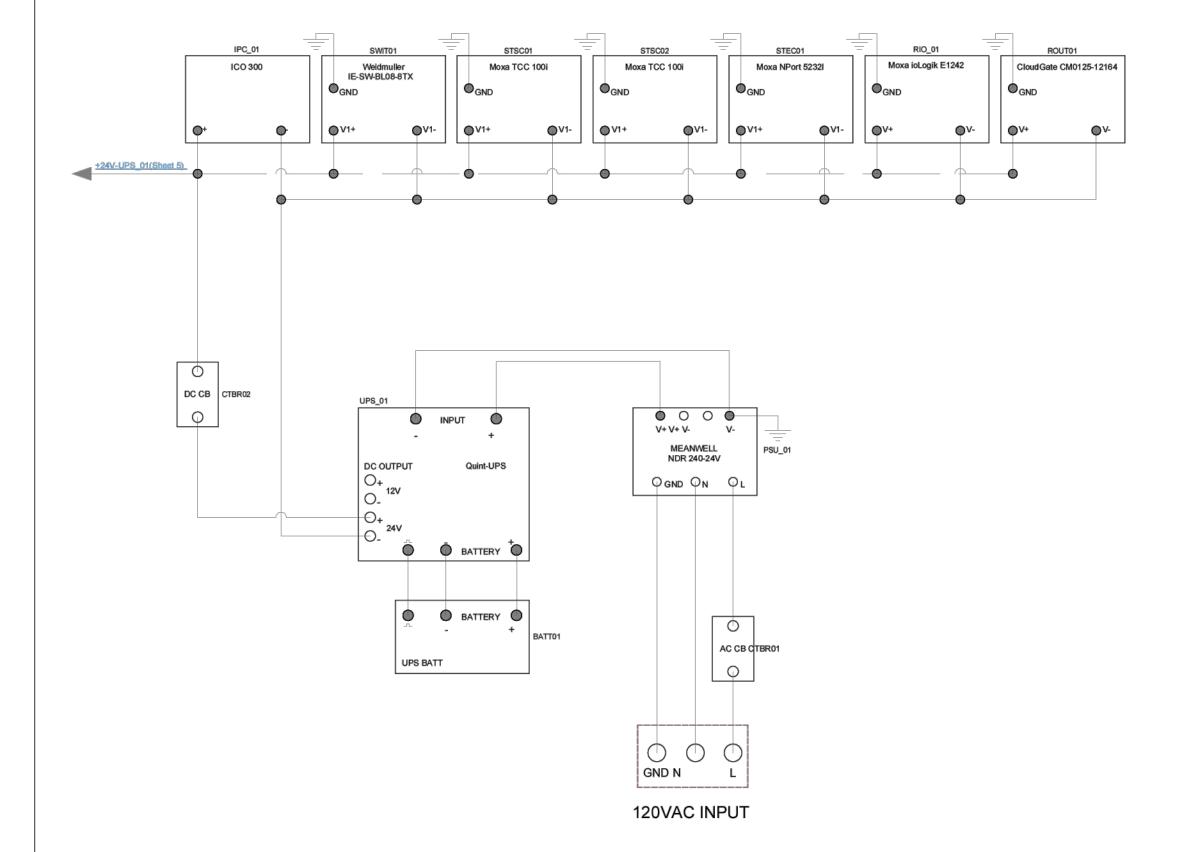


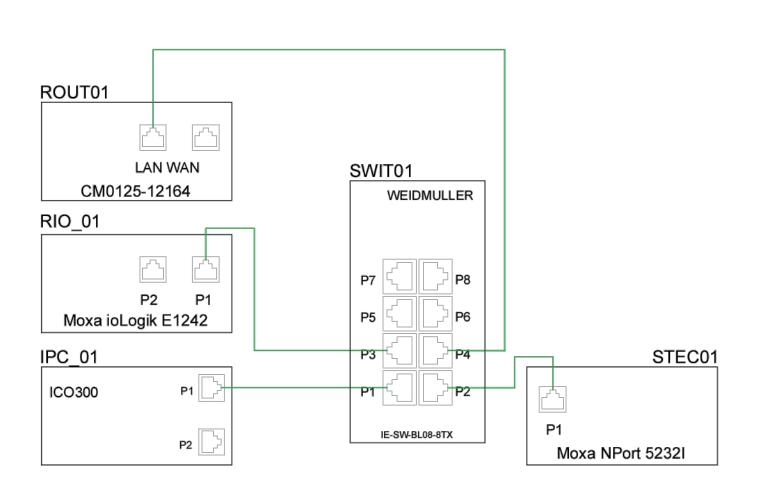
CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

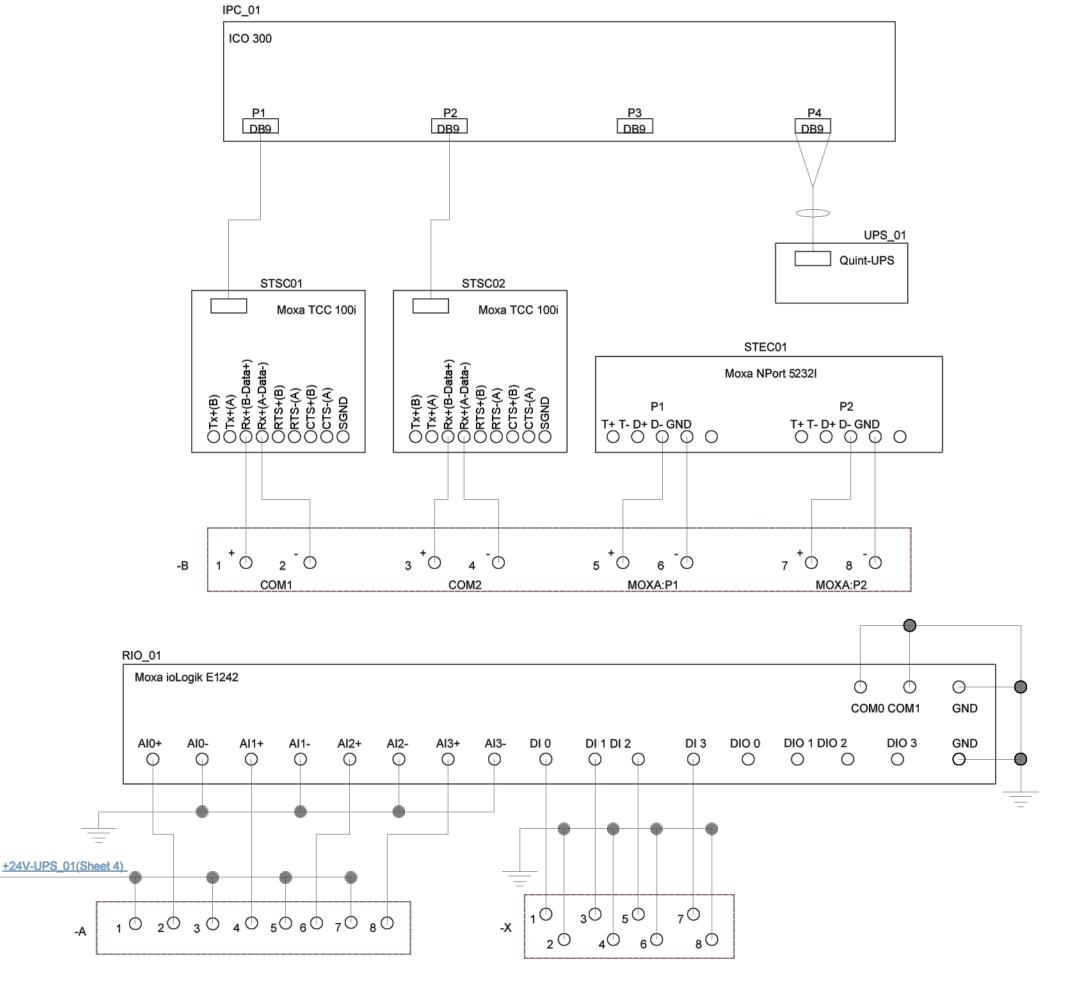
134 East 40th Street New York, New York 10016

DISCLAIMER:

Toll Free: 1-866-961-8654


All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


NOTES:


| REV. #5:                    | DATE:             |
|-----------------------------|-------------------|
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |

PRELIMINARY - NOT FOR CONSTRUCTION

| PROJECT:          | TRI-COUNT          | Y 5 MW SOLA     | R PROJECT        |
|-------------------|--------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVEL          | OPMENT CO       | RPORATION        |
| TITLE:            | DAS TER            | RMINATION DE    | ETAILS           |
| SCALE:            | N                  | OT TO SCALE     |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHE                | ET NO.          | REVISION         |
| E203              | 1                  | of 4            | 4                |







1 DAS-SCADA ENCLOSURE AND LAYOUT NTS



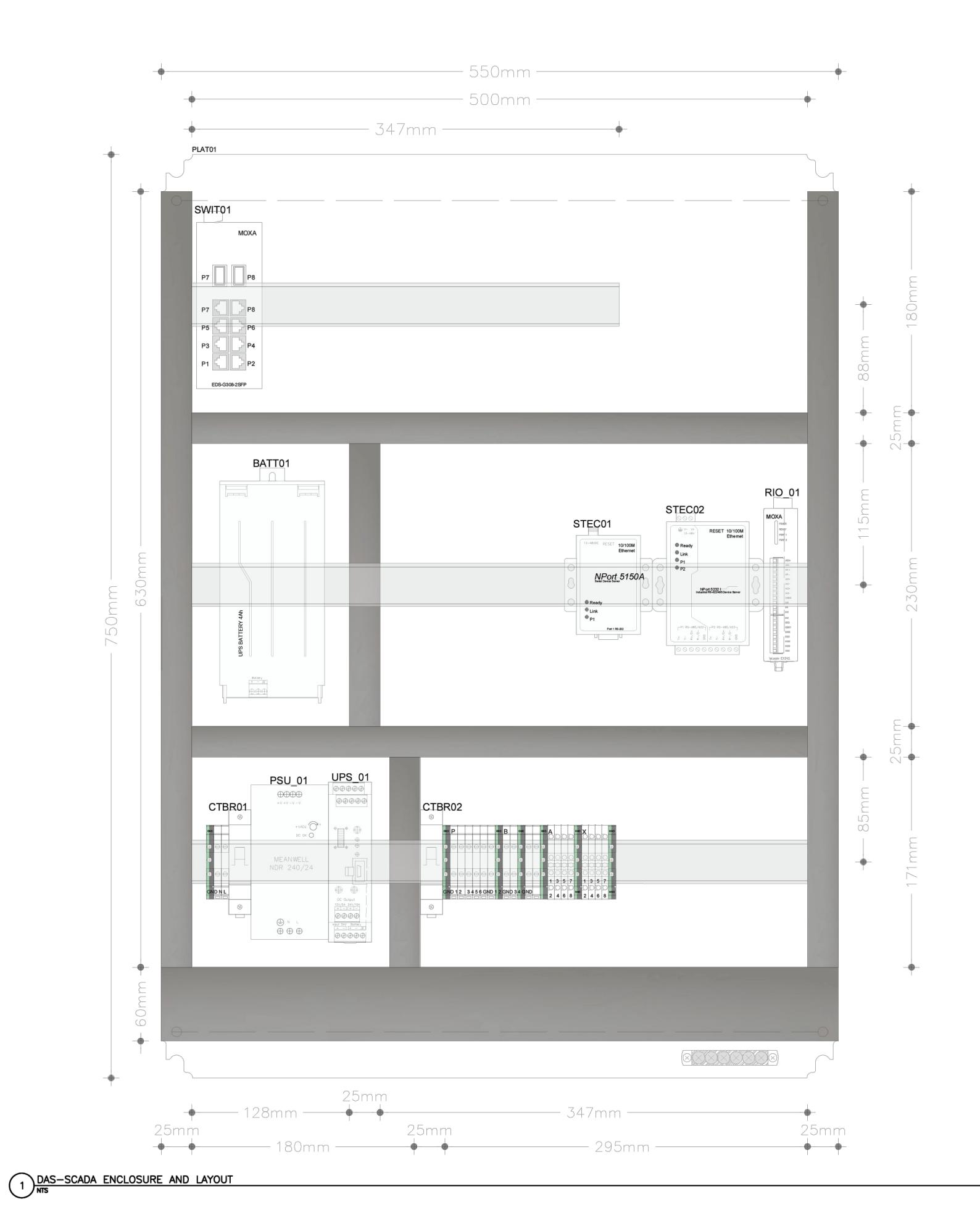
### **GREENWOOD**

GSI DEVELOPMENT CORPORATION CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

Phone: 519-804-9163

Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016


### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval. NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-202                                                                 |
|-----------------------------|----------------------------------------------------------------------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-202                                                                 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-202                                                                 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-202                                                                 |
| REV. #5:                    | DATE:                                                                            |
|                             | REV. #2: ISSUED FOR REVIEW REV. #3: ISSUED FOR REVIEW REV. #4: ISSUED FOR REVIEW |

| PROJECT:          | TRI-COUNT          | Y 5 MW SOLA     | R PROJECT        |
|-------------------|--------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVEL          | OPMENT CO       | RPORATION        |
| TITLE:            | DAS TER            | RMINATION DE    | ETAILS           |
| SCALE:            | N                  | OT TO SCALE     |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHE                | ET NO.          | REVISION         |
| E203              | 2                  | of 4            | 4                |
|                   |                    |                 |                  |



| PSSUNC PANEL   |                              |                                 |  |
|----------------|------------------------------|---------------------------------|--|
| Tag Model/Type |                              | Description                     |  |
| CABT01         | Schneider Thalassa NSYPLM86G | SCADA Cabinet                   |  |
| PLAT01         | Schneider Electric NSYMM86   | Mounting Plate                  |  |
| SWIT01         | Moxa EDS-G308-2SFP           | Unmanaged Switch                |  |
| STEC01         | Moxa NPORT 5150A             | RS232 to Ethernet Converter     |  |
| STEC02         | Moxa NPORT 5232I             | RS485 to Ethernet Converter     |  |
| RIO_01         | Moxa ioLogic E1242           | Remote I/O (4xAls,4xDls,4xDlOs) |  |
| CTBR01         | Schneider IK60N C10A         | AC Circuit Breaker              |  |
| CTBR02         | Schneider A9N61505           | DC Circuit Breaker              |  |
| PSU_01         | Meanwell NDR 240-24          | Cabinet PSU                     |  |
| UPS_01         | Phoenix Contact Quint UPS    | Cabinet UPS                     |  |
| BATT01         | Phoenix Contact Quint 4 AH   | Cabinet UPS Battery             |  |



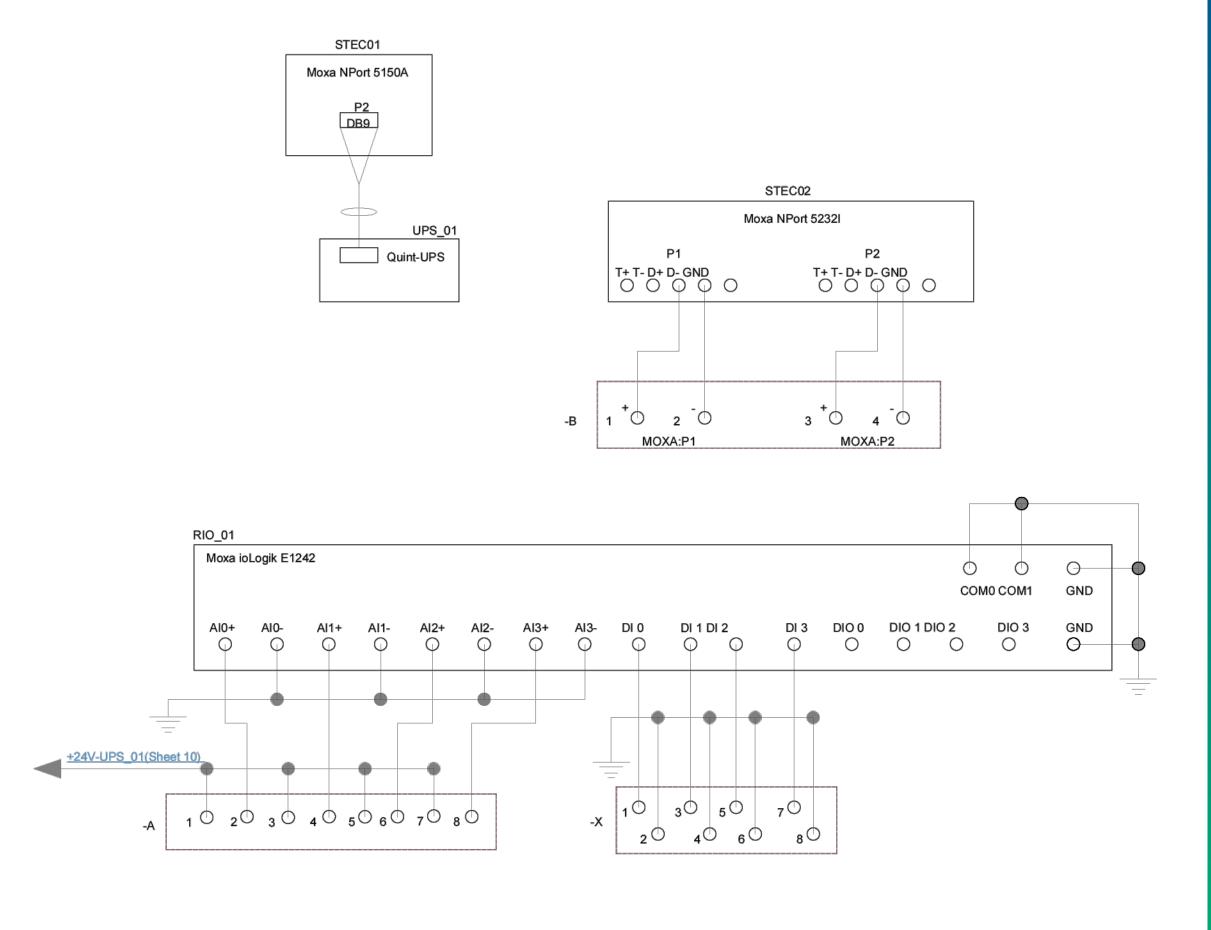
CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

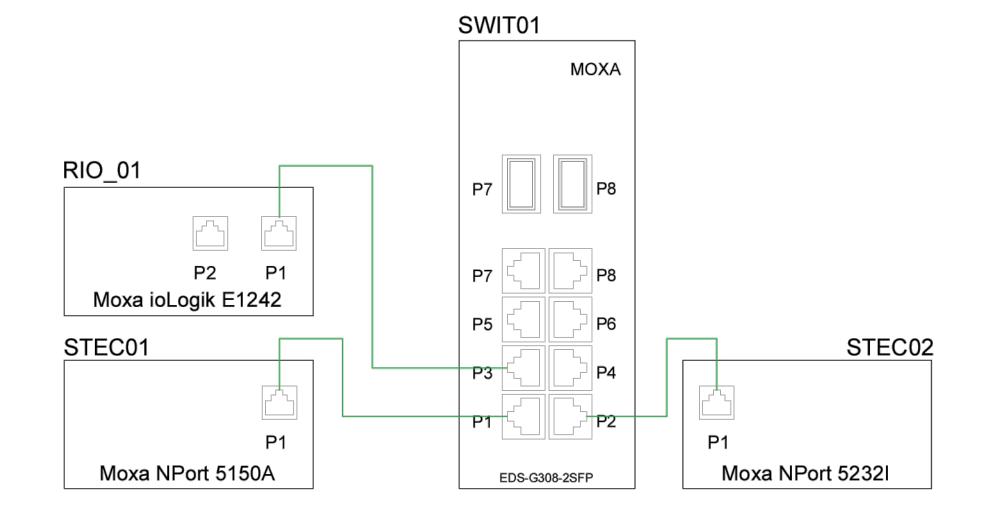
134 East 40th Street New York, New York 10016

Toll Free: 1-866-961-8654
DISCLAIMER:

Phone: 519-804-9163


All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


NOTES:


### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #5:                    | DATE:             |
|-----------------------------|-------------------|
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |

| ROJECT:           | TRI-COUNT                   | Y 5 MW SOLA     | R PROJECT        |  |
|-------------------|-----------------------------|-----------------|------------------|--|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION |                 |                  |  |
| TITLE:            | DAS TER                     | MINATION DE     | ETAILS           |  |
| SCALE:            | NO                          | OT TO SCALE     |                  |  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL          | DESIGNED<br>BY: | KYLE<br>EDGINTON |  |
| DWG. NO.          | SHE                         | ET NO.          | REVISION         |  |
| E203              | 3 (                         | of 4            | 4                |  |









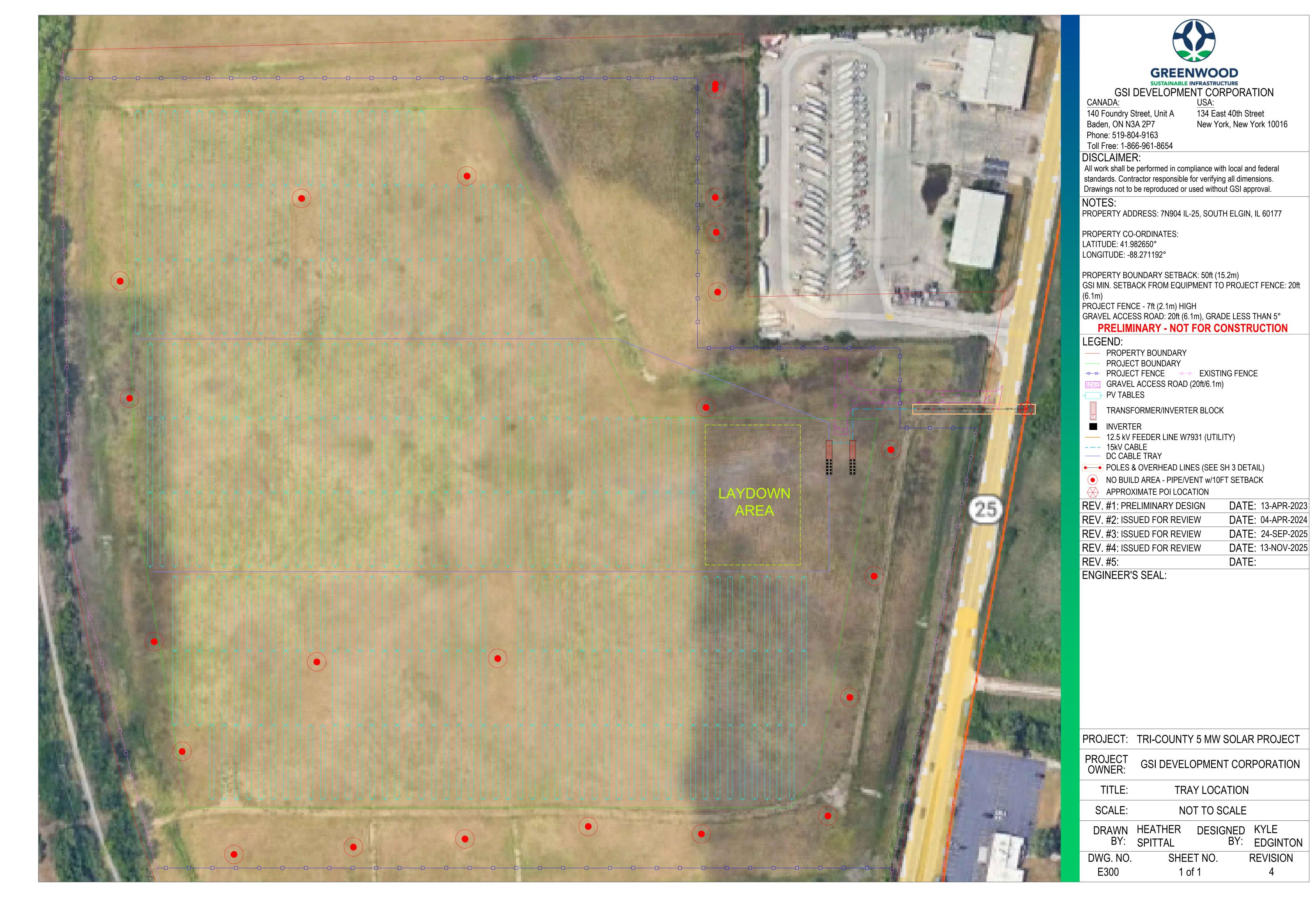


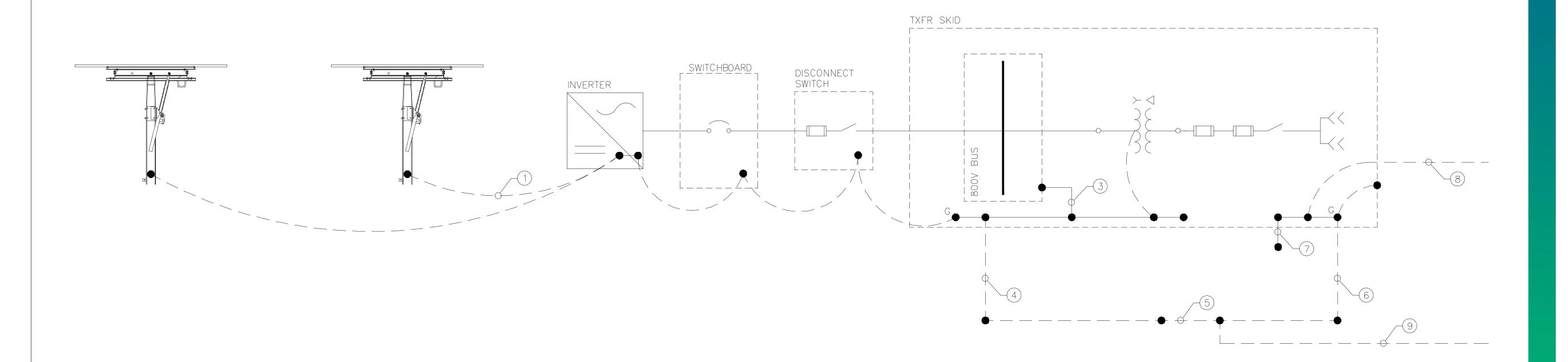
CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

134 East 40th Street New York, New York 10016

### Toll Free: 1-866-961-8654 DISCLAIMER:

Phone: 519-804-9163


All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
|                             |                   |

| ROJECT:           | TRI-COUNTY         | 5 MW SOLA       | R PROJECT        |
|-------------------|--------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVELC         | PMENT COF       | RPORATION        |
| TITLE:            | DAS TERM           | IINATION DE     | TAILS            |
| SCALE:            | NO <sup>-</sup>    | T TO SCALE      |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHEE               | T NO.           | REVISION         |
| E203              | 4 of               | 4               | 4                |





| GROUNDING CONDUCTOR SCHEDULE |                                                                                              |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| ITEM                         | DESCRIPTION                                                                                  |  |  |  |
| *                            | MODULE FRAME GROUNDED TO RACK FRAME THROUGH SERRATED FLANGE BOLT                             |  |  |  |
| 1                            | BONDING CONDUCTOR FROM RACKING C-CHANNEL TO INVERTER PE TERMINAL - #6 AWG INSULATED GREEN CU |  |  |  |
| 2                            | INVERTER, BREAKER BOX, AND DISCONNECT SWITCH COMMON BONDING CONDUCTOR — #2/0 AWG BARE CU     |  |  |  |
| 3                            | BUS PIGTAIL TO MV SKID GROUND PAD - #2/0 AWG BARE CU                                         |  |  |  |
| 4                            | AC PANELBOARD PIGTAIL TO MV SKID GROUND GRID — #2/0 AWG BARE CU                              |  |  |  |
| 5                            | MV SKID GROUND GRID — #2/0 AWG BARE CU                                                       |  |  |  |
| 6                            | TRANSFORMER HV COMPARTMENT PIGTAIL TO MV SKID GROUND PAD - #2/0 AWG BARE CU                  |  |  |  |
| 7                            | TRANSFORMER HV COMPARTMENT PIGTAIL TO MV SKID GROUND GRID - #2/0 AWG BARE CU                 |  |  |  |
| 8                            | MEDIUM VOLTAGE AC CABLE CONCENTRIC NEUTRAL — 1/3 CONCENTRIC NEUTRAL                          |  |  |  |
| 9                            | SITE GROUND GRID — TO BE RUN IN MV AC TRENCHES — 2 x #2/0 AWG BARE CU                        |  |  |  |



CANADA:
140 Foundry Street, Unit A
Baden, ON N3A 2P7
Phone: 519-804-9163

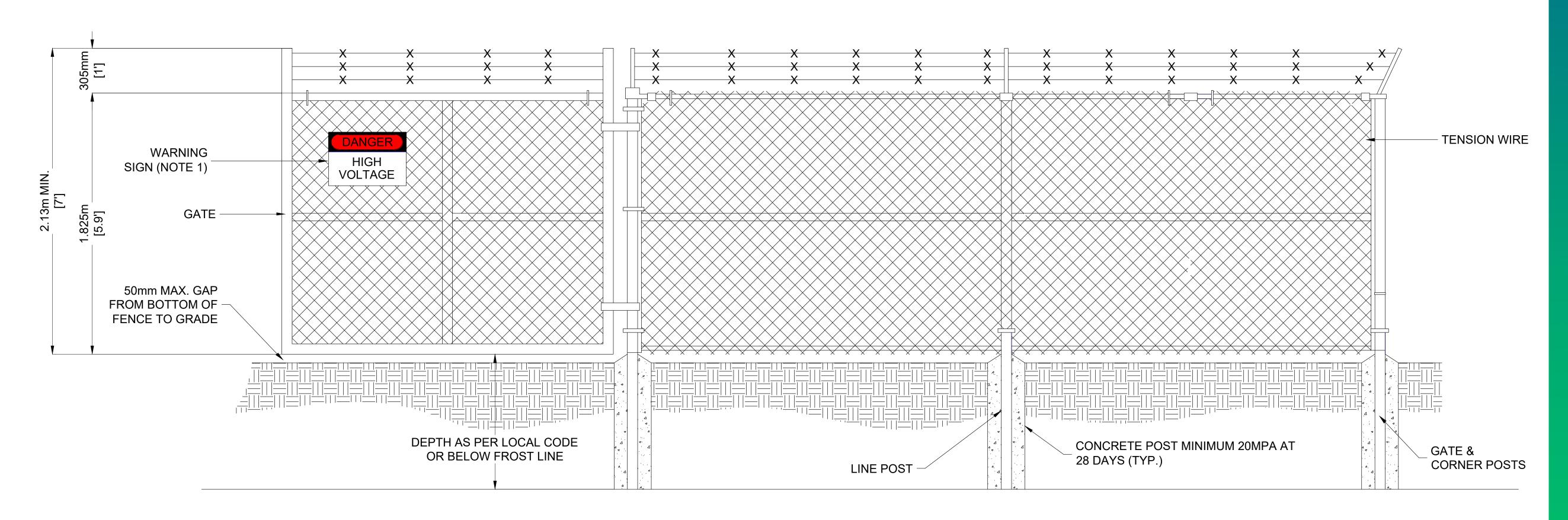
Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

NOTES:


### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |
|                             |                   |

| PROJECT:          | TRI-COUNTY 5 MW SOLAR PROJECT |
|-------------------|-------------------------------|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION   |
| TITLE:            | ARRAY GROUNDING METHODOLOGY   |

| SCALE:   | N                  | OT TO SCALE |                  |
|----------|--------------------|-------------|------------------|
|          | HEATHER<br>SPITTAL | DEGIGINED   | KYLE<br>EDGINTON |
| DWG. NO. | SHE                | ET NO.      | REVISION         |

E400 1 of 1 4



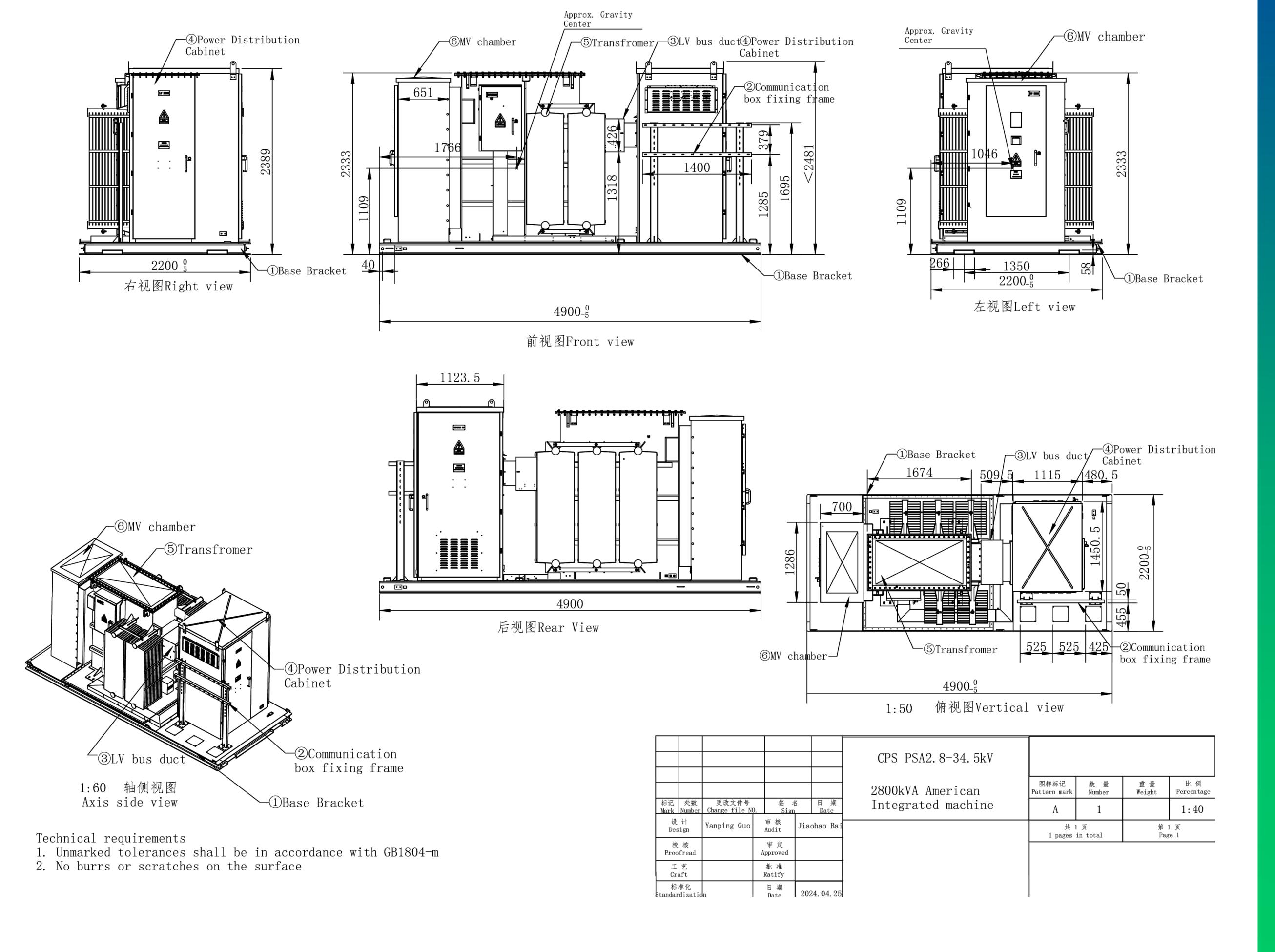


CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

Phone: 519-804-9163

134 East 40th Street New York, New York 10016

### Toll Free: 1-866-961-8654 DISCLAIMER:


All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |

| PROJECT:          | TRI-COUNT                   | Y 5 MW SOLA     | R PROJECT        |
|-------------------|-----------------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION |                 |                  |
| TITLE:            | FENCE DETAIL & GROUNDING    |                 |                  |
| SCALE:            | NOT TO SCALE                |                 |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL          | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHEET NO.                   |                 | REVISION         |
| E401              | 1 of 1                      |                 | 4                |





### GSI DEVELOPMENT CORPORATION

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

134 East 40th Street New York, New York 10016

Toll Free: 1-866-961-8654
DISCLAIMER:

Phone: 519-804-9163

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

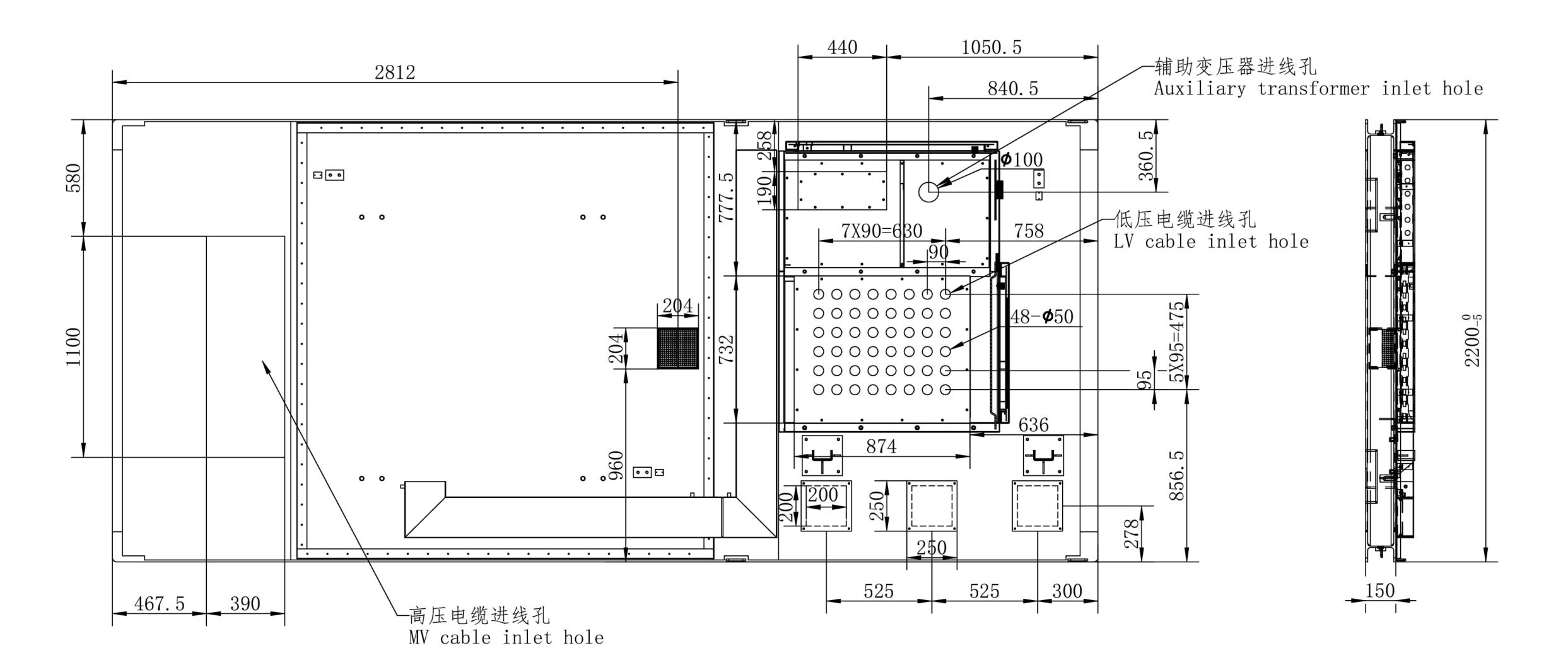
### NOTES:

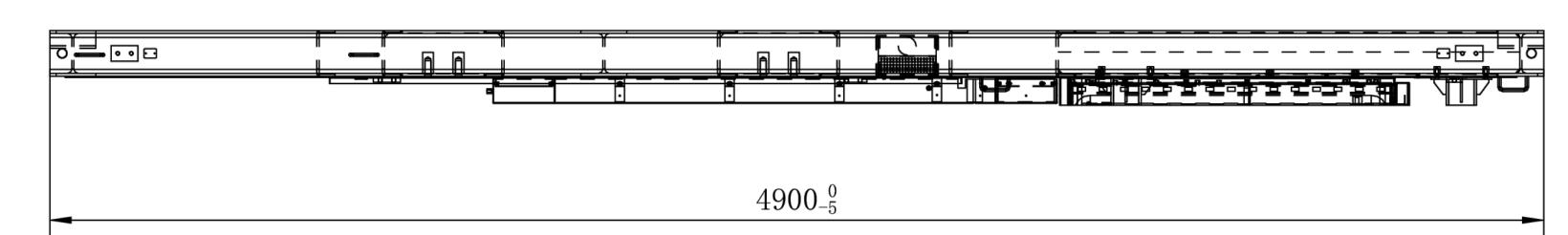
1. APPROXIMATE SKID WEIGHT: 21,000 lbs. (WITH EQUIPMENT)

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |

PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT


PROJECT GSI DEVELOPMENT CORPORATION


TITLE: MV SKID ELEVATIONS

SCALE: NOT TO SCALE

DRAWN HEATHER DESIGNED KYLE
BY: SPITTAL BY: EDGINTON

DWG. NO. SHEET NO. REVISION
E500 1 of 1 4





|               |              |                         |                 |              | CPS PSA2. 8M0-34. 5kV    |                      |               |               |                   |
|---------------|--------------|-------------------------|-----------------|--------------|--------------------------|----------------------|---------------|---------------|-------------------|
|               |              |                         |                 |              | View of cable inlet hole | 图样标记<br>Pattern mark | 数 量<br>Number | 重 量<br>Weight | 比 例<br>Percentage |
| 标记<br>Mark N  | 处数<br>Number | 更改文件号<br>Change file NO | 签 /<br>O. Sign  |              | view of cable infectione | A                    | 1             |               | 1:40              |
| 设 i<br>Desi   |              | Yanping Guo             | 审 核<br>Audit    |              |                          | 共 1<br>1 pages       |               | 第<br>Pag      | 1 页<br>ge 1       |
| 校<br>Proof:   |              |                         | 审 定<br>Approved |              |                          |                      |               |               |                   |
| I :           |              |                         | 批 准<br>Ratify   |              |                          |                      |               |               |                   |
| 标准<br>tandard |              | n                       | 日 期<br>Date     | 2024. 10. 18 |                          |                      |               |               |                   |



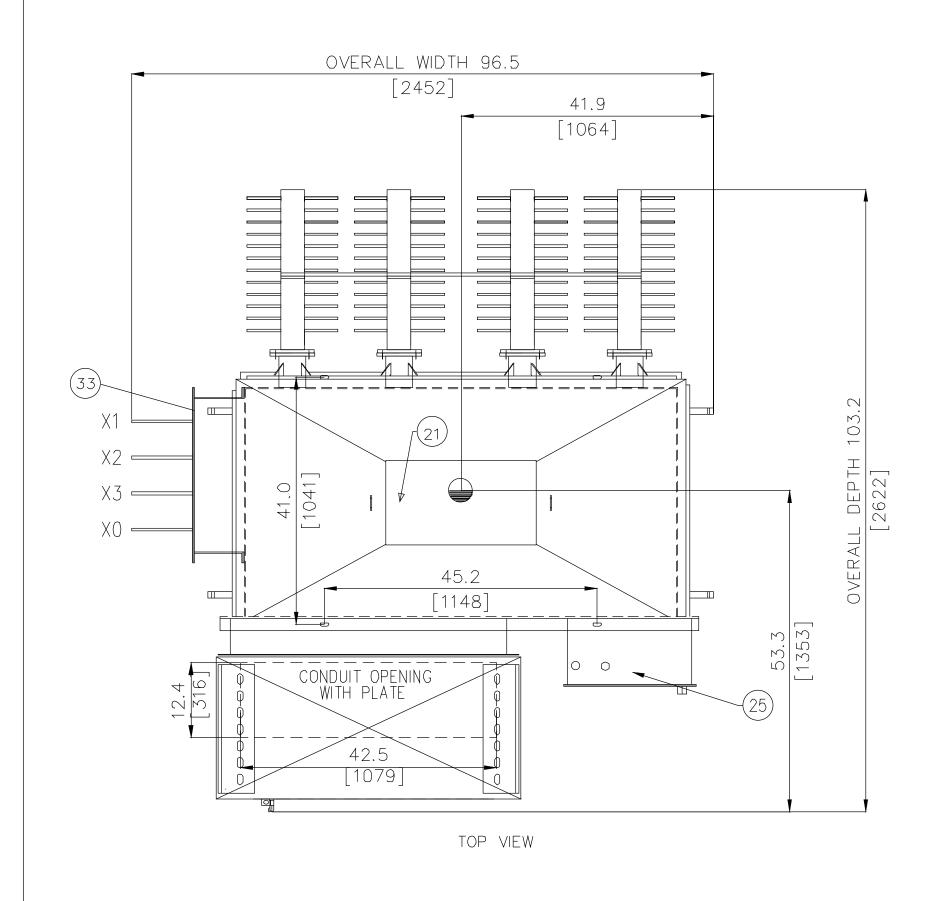
# GSI DEVELOPMENT CORPORATION

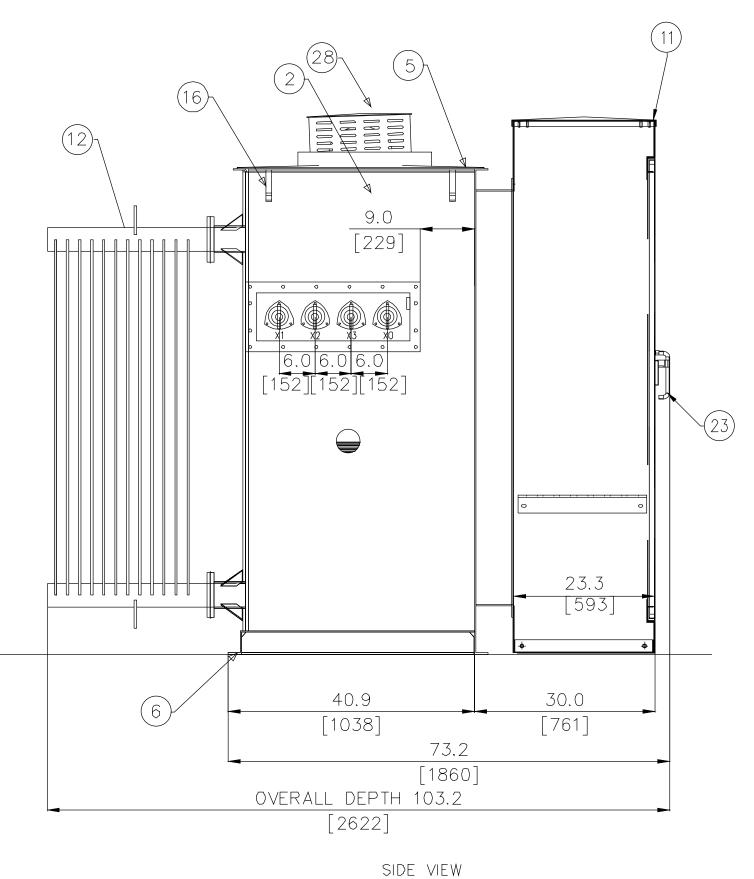
CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

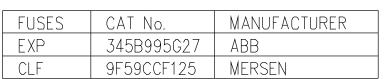
Toll Free: 1-866-961-8654

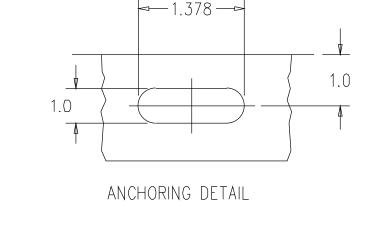
134 East 40th Street New York, New York 10016

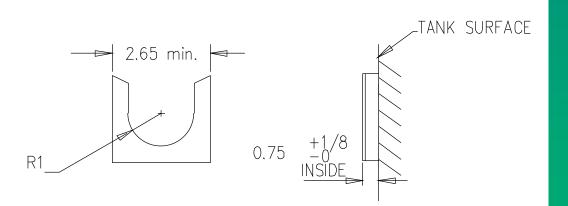
### DISCLAIMER:


All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


NOTES:


### PRELIMINARY - NOT FOR CONSTRUCTION


| ENIONIEEDIO OEAI            |                   |
|-----------------------------|-------------------|
| REV. #5:                    | DATE:             |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |


| PROJECT:          | TRI-COUNT          | Y 5 MW SOLA     | R PROJECT        |
|-------------------|--------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVEL          | OPMENT CO       | RPORATION        |
| TITLE:            | MV STA             | IT PLAN         |                  |
| SCALE:            | NO                 | OT TO SCALE     |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHE                | ET NO.          | REVISION         |
| E501              | 1 (                | of 1            | 4                |











PARKING STAND DETAIL

CENTER OF GRAVITY
COLOR: RAL7035
DESIGNED TO OPERATE BELOW 3300.0 FEET ABOVE SEA LEVEL

| 1  | DDECCUDE DELICE VALVE QUALITROL 202 072 01 FO CCEM                                     |
|----|----------------------------------------------------------------------------------------|
|    | PRESSURE RELIEF VALVE, QUALITROL 202-032-01 50 SCFM                                    |
| 2  | TANK (MILD STEEL)                                                                      |
| 3  | FILTER PRESS VALVE                                                                     |
| 4  | GROUND PADS                                                                            |
| 5  | TANK COVER                                                                             |
| 6  | BASE (MILD STEEL)                                                                      |
| 7  | PARKING STAND                                                                          |
| 8  | liquid level gauge with alarm contacts (set at low level)                              |
| 9  | HV INTEGRATED BUSHING 35kV CLASS, 150kV BIL, 600A                                      |
| 10 | LV BUSHING 12 HOLE BLADE 30KVBIL 2200A                                                 |
| 11 | CABINET (MILD STEEL)                                                                   |
| 12 | REMOVABLE RADIATORS                                                                    |
| 13 | SHRADDER VALVE                                                                         |
| 14 | PRESSURE VACUUM GAUGE WITH ALARM CONTACTS SET AT -7 PSIG TO 7.5 PSIG                   |
| 15 | 1" DRAIN VALVE WITH 3/8" SAMPLER HJ DV1000-001-FB                                      |
| 16 | LIFTING LUGS                                                                           |
| 17 | (1) 2 POSITION RADIAL SWITCH 300 AMP                                                   |
| 18 | TAP CHANGER                                                                            |
| 19 | ANODIZED ALUMINUM NAMEPLATE                                                            |
| 20 | THERMOMETER WITH ALARM CONTACTS (SET AT 85 C AND 105 C)                                |
| 21 | HAND HOLE 14"X25"                                                                      |
| 23 | DOOR HANDLE WITH PROVISION FOR PADLOCK                                                 |
| 24 | HV DOOR W/PENTA HEAD BOLT                                                              |
| 25 | ACCESORIES BOX                                                                         |
| 28 | MECHANICAL PRESSURE RELIEF DEVICE WITH ALARM CONTACTS SET AT 10PSI (QUALITROL 208-60F) |
| 29 | TERMINAL BLOCK                                                                         |
|    | TENNITY E DOON                                                                         |

### TRANSFORMER WEIGHTS

Note: Overall Dimensions are nominal with tolerance of +/- 0.5 all other dimensions have a tolerance of +/- 0.1

FLOOR LEVEL

FRONT VIEW

CORE & COIL 7 290 LBS TANK AND FITTINGS 4 496 LBS 670 GALLONS OF VG 100 5 040 LBS TOTAL WEIGHT 16 826 LBS

31 GROUND BUS 33 LV THROAT (DETACHABLE)(SEE RIL426B803)

# **GREENWOOD**

### GSI DEVELOPMENT CORPORATION CANADA:

140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

134 East 40th Street New York, New York 10016

### Toll Free: 1-866-961-8654 DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

### NOTES:

1. FUSE OVERMOLDS TO BE FIELD CERTIFIED IF NOT CSA/SUL CERTIFIED

### PRELIMINARY - NOT FOR CONSTRUCTION

| ENIONIEEDIO OF AL           |                   |
|-----------------------------|-------------------|
| REV. #5:                    | DATE:             |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |

| PROJECT:          | TRI-COUNT                   | R PROJECT       |                  |  |  |
|-------------------|-----------------------------|-----------------|------------------|--|--|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION |                 |                  |  |  |
| TITLE:            | TRANSFO                     | FICATIONS       |                  |  |  |
| SCALE:            | NO                          |                 |                  |  |  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL          | DESIGNED<br>BY: | KYLE<br>EDGINTON |  |  |
| DWG. NO.          | SHE                         | ET NO.          | REVISION         |  |  |
| E502              | 1 of 1                      |                 | 4                |  |  |







### TOPBiHiKu7

**N-type Bifacial TOPCon Technology** 675 W ~ 700 W CS7N-675 | 680 | 685 | 690 | 695 | 700TB-AG

### **MORE POWER**



Module power up to 700 W Module efficiency up to 22.5 %



Up to 85% Power Bifaciality, more power from the back side



Excellent anti-LeTID & anti-PID performance. Low power degradation, high energy yield



Lower temperature coefficient (Pmax): -0.29%/°C, increases energy yield in hot climate



Lower LCOE & system cost

### **MORE RELIABLE**



Minimizes micro-crack impacts



Heavy snow load up to 5400 Pa, wind load up to 2400 Pa\*



Enhanced Product Warranty on Materials and Workmanship\*



**Linear Power Performance Warranty\*** 

Subsequent annual power degradation no more than 0.4%

1st year power degradation no more than 1%

\*According to the applicable Canadian Solar Limited Warranty Statement.

**MANAGEMENT SYSTEM CERTIFICATES\*** 

ISO 9001: 2015 / Quality management system ISO 14001: 2015 / Standards for environmental management system ISO 45001: 2018 / International standards for occupational health & safety IEC 62941: 2019 / Photovoltaic module manufacturing quality system

### PRODUCT CERTIFICATES\*

IEC 61215 / IEC 61730 / CE / INMETRO / MCS / UKCA / CGC CEC listed (US California) / FSEC (US Florida) UL 61730 / IEC 61701 / IEC 62716 / IEC 60068-2-68

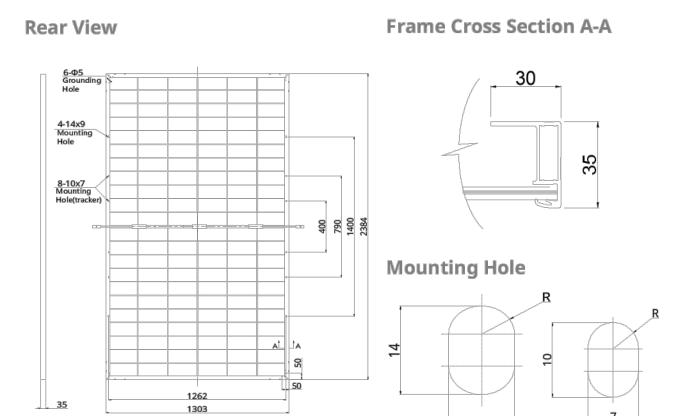











\* The specific certificates applicable to different module types and markets will vary, and therefore not all of the certifications listed herein will simultaneously apply to the products you order or use. Please contact your local Canadian Solar sales representative to confirm the specific certificates available for your Product and applicable in the regions in which the products will be used.

CSI Solar Co., Ltd. is committed to providing high quality solar photovoltaic modules, solar energy and battery storage solutions to customers. The company was recognized as the No. 1 module supplier for quality and performance/price ratio in the IHS Module Customer Insight Survey. Over the past 22 years, it has successfully delivered around 100 GW of premium-quality solar modules across the world.

### CSI Solar (USA) Co., Ltd.

1350 Treat Blvd. Suite 500, Walnut Creek, CA 94597 | www.csisolar.com/na | support.ca@csisolar.com

### **ENGINEERING DRAWING (mm)**



### **ELECTRICAL DATA | STC\***

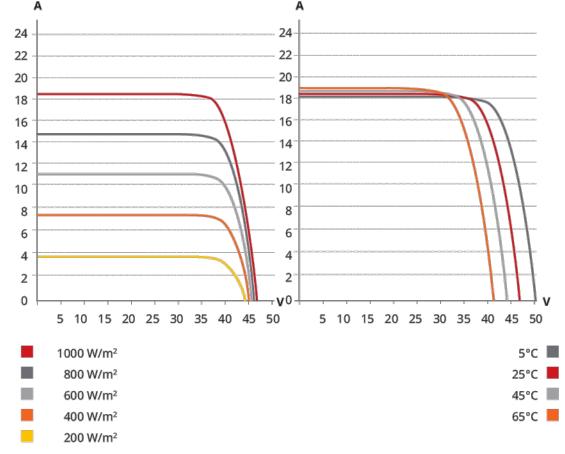
|                                                                                             |        | Nominal | I         | Opt.      | Open    | Short   |            |
|---------------------------------------------------------------------------------------------|--------|---------|-----------|-----------|---------|---------|------------|
|                                                                                             |        | Max.    | Operating | Operating | Circuit | Circuit | Module     |
|                                                                                             |        | Power   | Voltage   |           |         |         | Efficiency |
| CCTNI CTTT                                                                                  | 'D 4.C | (Pmax)  | (Vmp)     | (Imp)     | (Voc)   | (Isc)   | 24.70/     |
| CS7N-6751                                                                                   |        | 675 W   | 39.0 V    | 17.31 A   | 46.9 V  | 18.24 A | 21.7%      |
| Bifacial                                                                                    | 5%     | 709 W   | 39.0 V    | 18.19 A   | 46.9 V  | 19.15 A | 22.8%      |
| Gain**                                                                                      | 10%    | 743 W   | 39.0 V    | 19.04 A   | 46.9 V  | 20.06 A | 23.9%      |
|                                                                                             | 20%    | 810 W   | 39.0 V    | 20.77 A   | 46.9 V  | 21.89 A | 26.1%      |
| CS7N-680T                                                                                   | B-AG   | 680 W   | 39.2 V    | 17.35 A   | 47.1 V  | 18.29 A | 21.9%      |
| D:6                                                                                         | 5%     | 714 W   | 39.2 V    | 18.22 A   | 47.1 V  | 19.20 A | 23.0%      |
| Bifacial<br>Gain**                                                                          | 10%    | 748 W   | 39.2 V    | 19.09 A   | 47.1 V  | 20.12 A | 24.1%      |
| Gaill                                                                                       | 20%    | 816 W   | 39.2 V    | 20.82 A   | 47.1 V  | 21.95 A | 26.3%      |
| CS7N-685T                                                                                   | B-AG   | 685 W   | 39.4 V    | 17.39 A   | 47.3 V  | 18.34 A | 22.1%      |
|                                                                                             | 5%     | 719 W   | 39.4 V    | 18.26 A   | 47.3 V  | 19.26 A | 23.1%      |
| Bifacial<br>Gain**                                                                          | 10%    | 754 W   | 39.4 V    | 19.14 A   | 47.3 V  | 20.17 A | 24.3%      |
| Gaiii                                                                                       | 20%    | 822 W   | 39.4 V    | 20.87 A   | 47.3 V  | 22.01 A | 26.5%      |
| CS7N-6901                                                                                   | B-AG   | 690 W   | 39.6 V    | 17.43 A   | 47.5 V  | 18.39 A | 22.2%      |
|                                                                                             | 5%     | 725 W   | 39.6 V    | 18.31 A   | 47.5 V  | 19.31 A | 23.3%      |
| Bifacial<br>Gain**                                                                          | 10%    | 759 W   | 39.6 V    | 19.17 A   | 47.5 V  | 20.23 A | 24.4%      |
| Gain**                                                                                      | 20%    | 828 W   | 39.6 V    | 20.92 A   | 47.5 V  | 22.07 A | 26.7%      |
| CS7N-6951                                                                                   | B-AG   | 695 W   | 39.8 V    | 17.47 A   | 47.7 V  | 18.44 A | 22.4%      |
|                                                                                             | 5%     | 730 W   | 39.8 V    | 18.34 A   | 47.7 V  | 19.36 A | 23.5%      |
| Bifacial                                                                                    | 10%    | 765 W   | 39.8 V    | 20.18 A   | 47.7 V  | 20.28 A | 24.6%      |
| Gain**                                                                                      | 20%    | 834 W   | 39.8 V    | 20.96 A   | 47.7 V  | 22.13 A | 26.8%      |
| CS7N-7001                                                                                   | B-AG   | 700 W   | 40.0 V    | 17.51 A   | 47.9 V  | 18.49 A | 22.5%      |
| -10                                                                                         | 5%     | 735 W   | 40.0 V    | 18.39 A   | 47.9 V  | 19.41 A | 23.7%      |
| Bifacial<br>Gain**                                                                          | 10%    | 770 W   | 40.0 V    | 20.22 A   | 47.9 V  | 20.34 A | 24.8%      |
| Gaill**                                                                                     | 20%    | 840 W   | 40.0 V    | 21.01 A   | 47.9 V  | 22.19 A | 27.0%      |
| * Under Standard Test Conditions (STC) of irradiance of 1000 W/m², spectrum AM 1.5 and cell |        |         |           |           |         |         |            |

\*\* Bifacial Gain: The additional gain from the back side compared to the power of the front side at the standard test condition. It depends on mounting (structure, height, tilt angle etc.) and albedo

### **ELECTRICAL DATA**

of the ground.

| Operating Temperature                                                | -40°C ~ +85°C                                                                  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Max. System Voltage                                                  | 1500 V (IEC/UL) or 1000 V (IEC/UL)                                             |
| Module Fire Performance                                              | TYPE 29 (UL 61730) or CLASS C (IEC61730)                                       |
| Max. Series Fuse Rating                                              | 35 A                                                                           |
| Application Classification                                           | Class A                                                                        |
| Power Tolerance                                                      | 0 ~ + 10 W                                                                     |
| Power Bifaciality*                                                   | 80 %                                                                           |
| * Power Bifaciality = Pmax <sub>rear</sub> / Pma<br>Tolerance: ± 5 % | $ax_front$ , both Pma $x_rear$ and Pma $x_front$ are tested under STC, Bifacia |


\* The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. CSI Solar Co., Ltd. reserves the right to make necessary adjustment to the information described herein at any time without

Please be kindly advised that PV modules should be handled and installed by qualified people who have professional skills and please carefully read the safety and installation instructions before using our PV modules.

### CSI Solar (USA) Co., Ltd.

June 2023 | All rights reserved | PV Module Product Datasheet v1.52\_F43M\_P1\_NA

### CS7N-680TB-AG / I-V CURVES



### **ELECTRICAL DATA | NMOT\***

|                                             | Nominal<br>Max.<br>Power<br>(Pmax) | Opt.<br>Operating<br>Voltage<br>(Vmp) | Opt.<br>Operating<br>Current<br>(Imp) | Open<br>Circuit<br>Voltage<br>(Voc) | Short<br>Circuit Cur-<br>rent (Isc) |
|---------------------------------------------|------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|
| CS7N-675TB-AG                               | 510 W                              | 36.9 V                                | 13.84 A                               | 44.4 V                              | 14.71 A                             |
| CS7N-680TB-AG                               | 514 W                              | 37.1 V                                | 13.88 A                               | 44.6 V                              | 14.75 A                             |
| CS7N-685TB-AG                               | 518 W                              | 37.2 V                                | 13.91 A                               | 44.8 V                              | 14.79 A                             |
| CS7N-690TB-AG                               | 522 W                              | 37.4 V                                | 13.94 A                               | 45.0 V                              | 14.83 A                             |
| CS7N-695TB-AG                               | 526 W                              | 37.6 V                                | 13.97 A                               | 45.2 V                              | 14.87 A                             |
| CS7N-700TB-AG                               | 529 W                              | 37.8 V                                | 14.00 A                               | 45.4 V                              | 14.91 A                             |
| * Under Nominal Mod<br>trum AM 1.5, ambient | •                                  |                                       | -                                     | diance of 80                        | 00 W/m², spec-                      |

| MECHANICAL DATA                       |                                                                                             |
|---------------------------------------|---------------------------------------------------------------------------------------------|
| Specification                         | Data                                                                                        |
| Cell Type                             | TOPCon cells                                                                                |
| Cell Arrangement                      | 132 [2 x (11 x 6) ]                                                                         |
| Dimensions                            | 2384 × 1303 × 35 mm (93.9 × 51.3 × 1.38 in)                                                 |
| Weight                                | 37.9 kg (83.6 lbs)                                                                          |
| Front Glass                           | 2.0 mm heat strengthened glass with anti-<br>reflective coating                             |
| Back Glass                            | 2.0 mm heat strengthened glass                                                              |
| Frame                                 | Anodized aluminium alloy                                                                    |
| J-Box                                 | IP68, 3 bypass diodes                                                                       |
| Cable                                 | 6.0 mm² (IEC), 10 AWG (UL)                                                                  |
| Cable Length<br>(Including Connector) | 410 mm (16.1 in) (+) / 250 mm (9.8 in) (-) or 2000 mm (78.7 in) (+) / 1400 mm (55.1 in) (-) |
| Connector                             | T6 or MC4 series                                                                            |
| Per Pallet                            | 31 pieces                                                                                   |
| Per Container (40' HO                 | 558 pieces or 496 pieces (only for US &                                                     |

Per Container (40' HQ) Canada) \* For detailed information, please contact your local Canadian Solar sales and technical

### **TEMPERATURE CHARACTERISTICS**

| Specification                        | Data         |  |  |
|--------------------------------------|--------------|--|--|
| Temperature Coefficient (Pmax)       | -0.29 % / °C |  |  |
| Temperature Coefficient (Voc)        | -0.25 % / °C |  |  |
| Temperature Coefficient (Isc)        | 0.05 % / °C  |  |  |
| Nominal Module Operating Temperature | 41 ± 3°C     |  |  |

### **PARTNER SECTION**

### PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT PROJECT GSI DEVELOPMENT CORPORATION OWNER: TITLE: MODULE SPECIFICATIONS SCALE: NOT TO SCALE HEATHER DESIGNED KYLE DRAWN BY: EDGINTON SPITTAL DWG. NO. SHEET NO. **REVISION**

1 of 1

E600

**GREENWOOD** GSI DEVELOPMENT CORPORATION

140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

DISCLAIMER:

CANADA:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval. NOTES:

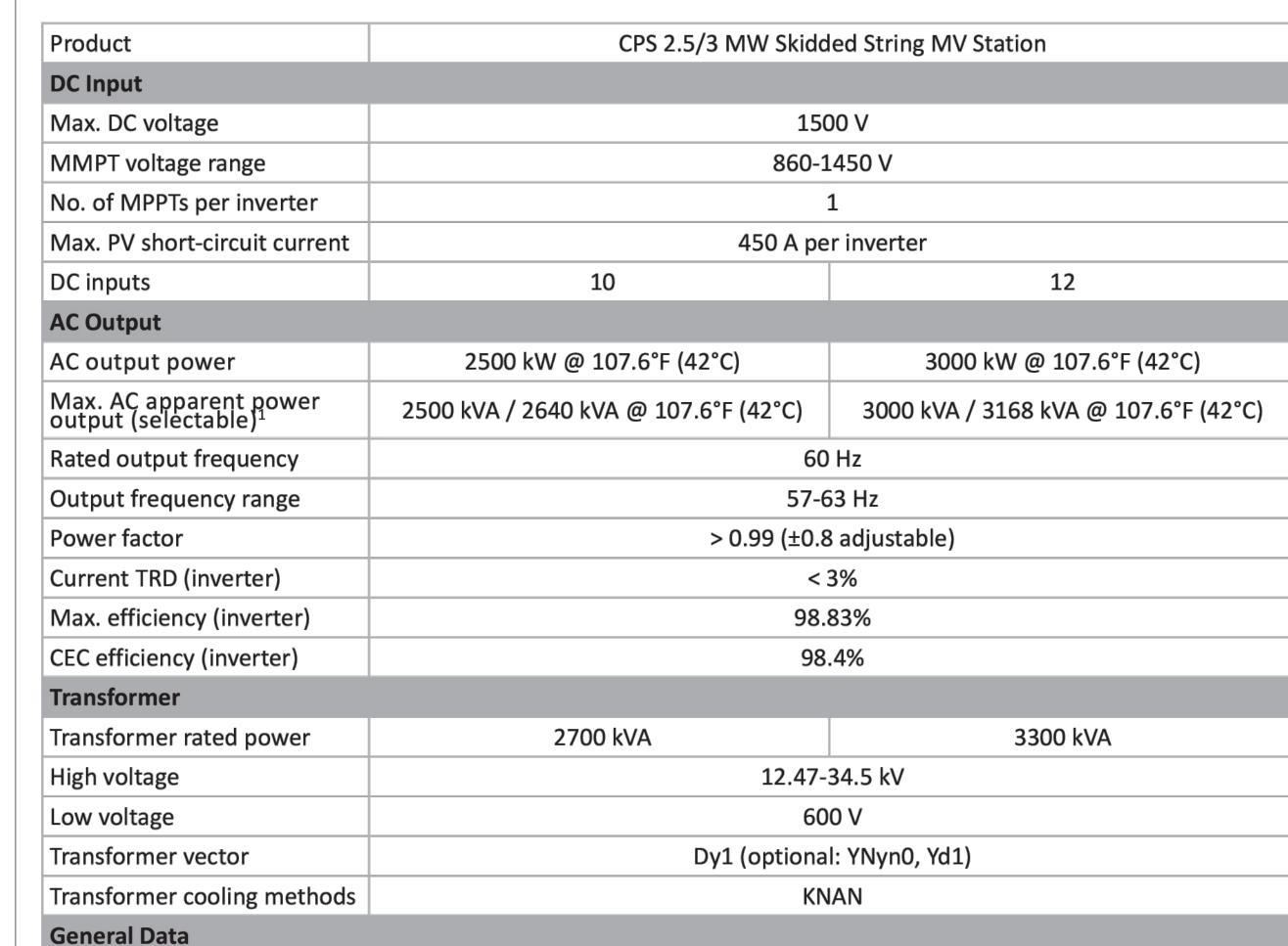
### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |

<sup>\*</sup> For detailed information, please refer to the Installation Manual.



Preliminary Data




Technical D



Max. operating altitude

Anti-PID

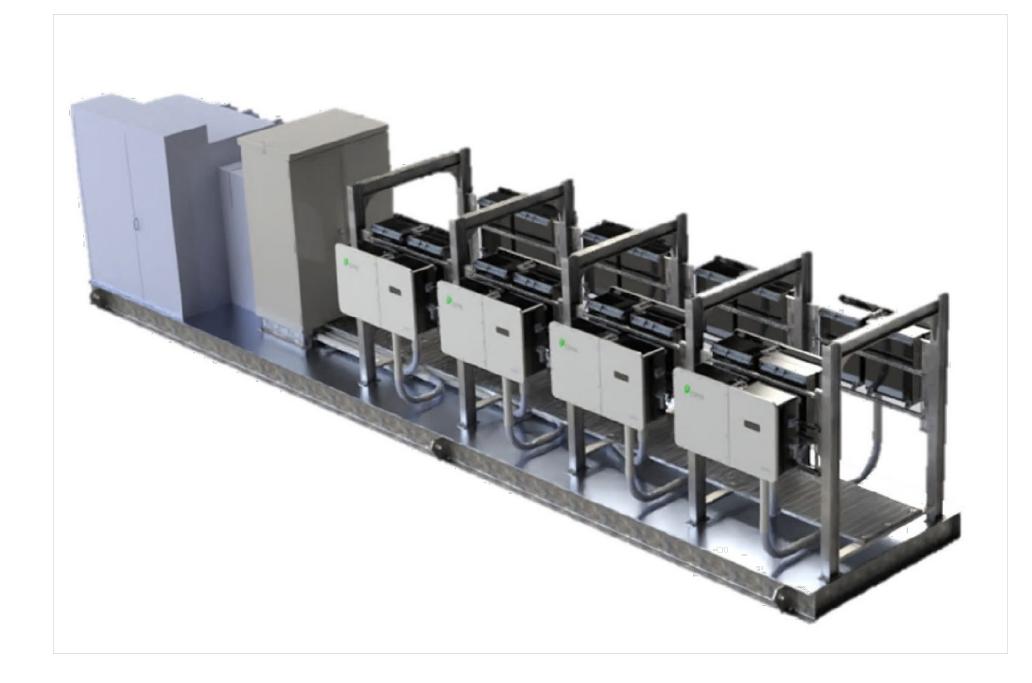


3280.8 ft / 1000 m (standard)

Standard

PROJECT OWNER:

SCALE:


DWG. NO.

E601

DRAWN HEATHER

SPITTAL

# **Skidded String MV Station**



The CPS skidded string medium voltage station combines the strengths of string inverters with the efficiency of a centralized layout, optimizing energy production and control granularity. This high performance, pre-integrated system is not only designed for reliability, but additionally reduces on-site labor, shortens installation time, and lowers total project costs. The station can support up to twelve (12) CPS 250 kW-600 V inverters on a single steel skid and is compatible with DC combiners and/or trunk-bus cabling for design flexibility.

### **Key Features**

- Offers 2.5 MW and 3 MW options to maximize power density and ease of deployment
- Separable powerhead wire box design to reduce O&M time and improve serviceability
- Fully integrated plug-and-play solution to simplify procurement and installation
- Includes MV transformer and 600 V switchboard
- US-made skid materials and transformer options available





© CHINT POWER SYSTEMS AMERICA 2025/5-MKT NA

1380 Presidential Drive, Suite 100, Richardson, TX

Chint Power Systems A Tel: 855-584-7168 Mail: AmericaSales@chintpower.com Web: www.chintpowersystem



**GREENWOOD** GSI DEVELOPMENT CORPORATION

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163 Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval. NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |

PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT

GSI DEVELOPMENT CORPORATION

TITLE: SKIDDED STRING MV STATION SPECS

SHEET NO.

1 of 1

NOT TO SCALE

DESIGNED KYLE

BY: EDGINTON

REVISION



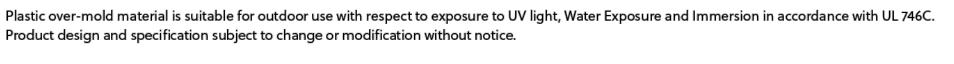
# BIG LEAD ASSEMBLY (BLA)

### **ABOUT**


Shoals<sup>™</sup> introduces the Big Lead Assembly, or BLA for short. The BLA is an aboveground aluminum trunk system that combines the functionality of cable assemblies, combiner boxes, and fusing all into one. This free air de-rated system eliminates the need for standard combiner boxes, messy multiple conductor string wires, cable trays, trenching, and field crimping. Factory manufactured and quality guaranteed.

### **FEATURES**

- Up to (8) input leads per BLA mold drop
- Configurable for FSLR S4, FSLR S6, FSLR S7, Crystalline, or Bi-Facial
- Plug and Play eliminates field crimping and splicing
- Patented undermold/overmold process chemically bonds and hermetically seals joints
- Eliminates standard combiner boxes
- Utilizes free air ampacity table NEC 310.17
- · Standard 5-year warranty on all models
- ETL certified to UL9703 and UL4248
- ETL certified to CSA C22.2#182.5 for PV Connectors
- ETL certified to CSA C22.2#271 for PV Cables
- ETL certified to CSA C22.2#198.2 for Sealed Wire Connector Systems
- ETL certified to CSA C22.2#4248.1 for Fuseholders


### **OPTIONS**

- Customizable for up to 750 MCM wire gauges
- Messenger cable for mechanical attachment
- Cable available in standard colors



| TECHNICAL SPECS             | STG.BLA           |
|-----------------------------|-------------------|
| Voltage Rating              | 1500 VDC          |
| Max. Current (Trunk)        | Up to 700A*       |
| Max. OCPD Per Input Circuit | 65A               |
| Max. Trunk Cable Size       | 750 MCM           |
| Number of Input Circuits    | Customer Specific |
| Max. Ambient Temp. Rating   | 50°C              |

\*Max current shown is per NEC Code 2023, Table 310.17 for single-insulated conductors in free air at an ambient temperature of 30°C. Max current per BLA mold drop is determined by max allowable conductor ampacity per NEC 690.8(B) and any additional derating required at different ambient temperatures. Please refer to the Engineer of Record for calculations or use of different tables.











# GSI DEVELOPMENT CORPORATION

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval. NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |

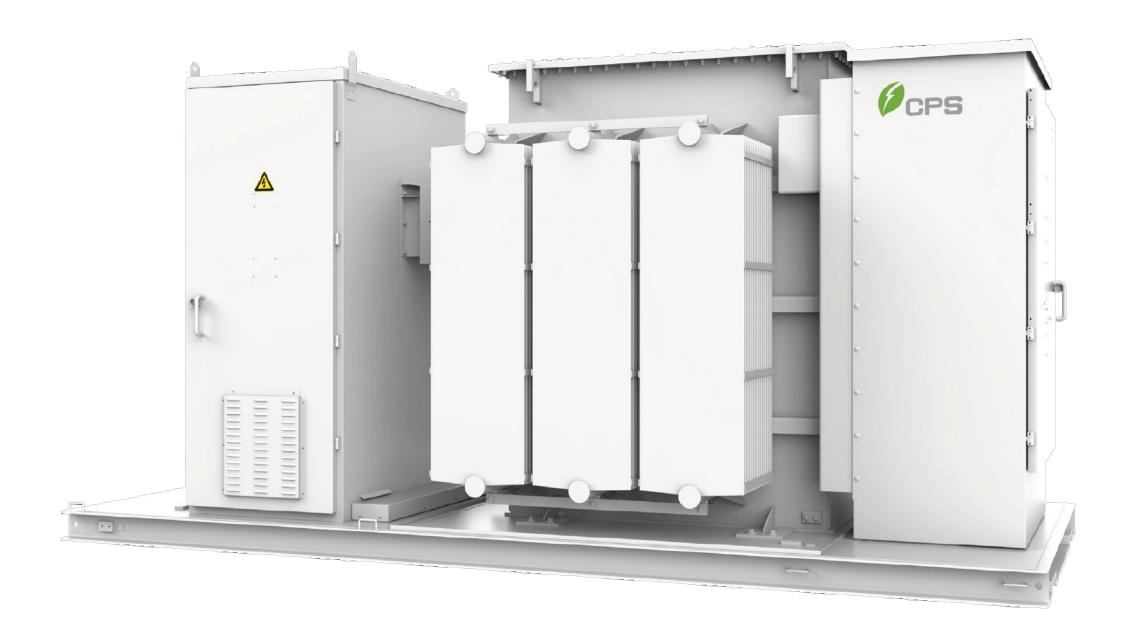
ENGINEER'S SEAL:

OWNER:

PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT GSI DEVELOPMENT CORPORATION

TITLE: BIG LEAD ASSEMBLY SPECIFICATIONS

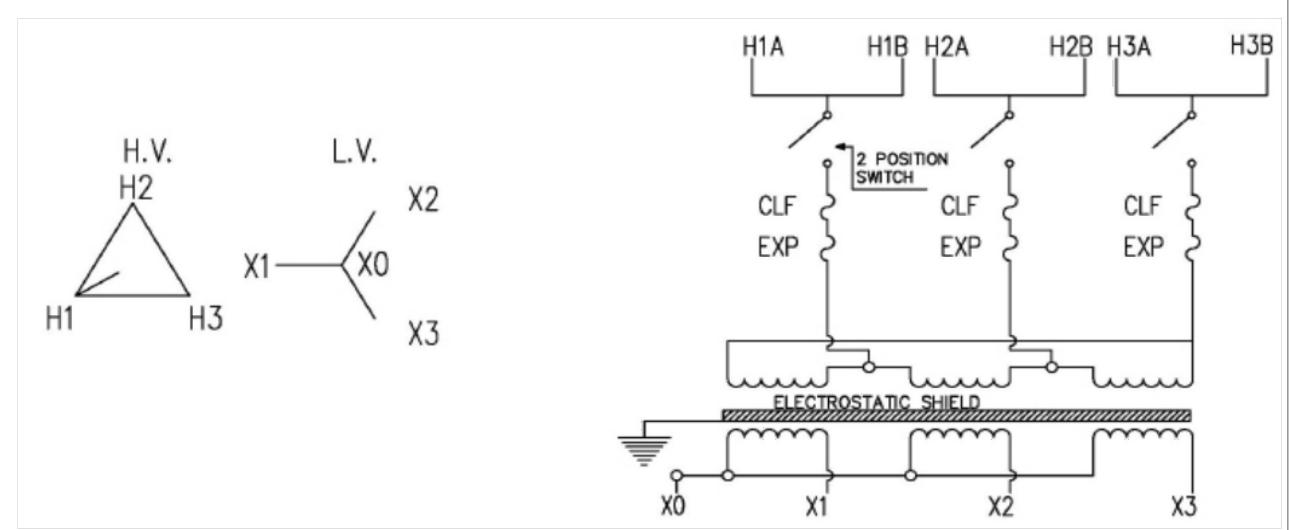
SCALE: NOT TO SCALE


DRAWN HEATHER DESIGNED KYLE BY: EDGINTON SPITTAL DWG. NO. SHEET NO. **REVISION** 

E602 1 of 1



### Datasl


# **Medium Voltage Transformer Skid**



The CPS three-phase medium voltage transformer skid brings electrical power generated from PV inverters to the substation. The transformers are designed for superior reliability, efficiency, and environmental performance. A modular architecture paired with design options ensures cost efficiency and easy, minimal maintenance. The skid integrates a medium voltage transformer, low voltage cabinet, auxiliary transformer, and monitoring gauges. CPS offers various configurations with multiple capacities and interconnection voltages.

### **Phasor Diagram Example**

### **Connection Diagram Example**





© CHINT POWER SYSTEMS AMERICA 2025/2-MKT NA

Chint Power Systems Ame 1380 Presidential Drive, Suite 100, Richardson, TX 75 Tel: 855-584-7168 Mail: AmericaSales@chintpower.com Web: www.chintpowersystems.



Technical Data

| Product Name                                       |                                                               | iviedium           | Voltage Transform    | er skiu                             |          |
|----------------------------------------------------|---------------------------------------------------------------|--------------------|----------------------|-------------------------------------|----------|
| Specifications                                     |                                                               |                    |                      |                                     |          |
| Rated power (kVA)                                  | 4200 kVA, 3300 kVA, 2800 kVA                                  |                    |                      |                                     |          |
| Installation location                              |                                                               |                    | NEMA 3R              |                                     |          |
| Number of windings                                 |                                                               |                    | 2                    |                                     |          |
| Operating ambient temperature range @ rated power  |                                                               | -22°F t            | to 113°F (-30°C to 4 | 15°C)                               |          |
| Average winding temperature rise                   |                                                               |                    | 140°F (60°C)         |                                     |          |
| Cooling class                                      |                                                               |                    | KNAN                 |                                     |          |
| Frequency                                          |                                                               |                    | 60 Hz                |                                     |          |
| Electrostatic shielding                            | Electi                                                        | rostatic shield be | tween HV and LV w    | vindings (2 windir                  | ngs)     |
| Insulating fluid                                   |                                                               |                    | FR3 oil              |                                     |          |
| High voltage                                       | 34.5 kV                                                       | 24.94 kV           | 13.8 kV              | 13.2 kV                             | 12.47 kV |
| High voltage bushing style                         | 6 - integral dead<br>600 A 15                                 | dbreak bushing     | 6 - integ            | ral deadbreak bu<br>500 A 95 kV BIL | shing    |
| High voltage conductor material                    | 000 A 13                                                      | O RV DIE           | Aluminum             | DOO A 33 KV BIE                     |          |
| Taps                                               |                                                               | 2-2.5% above ar    | nd 2-2.5% below no   | ominal voltage                      |          |
| High voltage configuration                         |                                                               | Lo                 | op-feed, dead fron   | t                                   |          |
| Load-break switching                               |                                                               | 630 A two          | position load brea   | k switch                            |          |
| High voltage enclosure type                        | Bottom entry                                                  |                    |                      |                                     |          |
| Medium voltage protection                          | EXP fuses in series with partial-range current-limiting fuses |                    |                      |                                     |          |
| Low voltage                                        | 800 Vac                                                       |                    |                      |                                     |          |
| LV bushing BIL                                     | 30 kV                                                         |                    |                      |                                     |          |
| LV bushing connection                              | Up to (20) 800 kcmil aluminum or copper per phase             |                    |                      |                                     |          |
| LV conductor material                              | Aluminum                                                      |                    |                      |                                     |          |
| Maximum elevation                                  | 6561.68 ft (2000 m)                                           |                    |                      |                                     |          |
| Vector group                                       | Dy1, Dy11, Yd1, Yd11, YNyn0                                   |                    |                      |                                     |          |
| Dimensions (W × H × D)                             | 16.08 × 8.14 × 7.22 ft (4900 × 2481 × 2200 mm)                |                    |                      |                                     |          |
| Accessories                                        |                                                               |                    |                      |                                     |          |
| Liquid level indicator                             |                                                               |                    | Included             |                                     |          |
| Liquid temperature indicator                       |                                                               |                    | Included             |                                     |          |
| Pressure vacuum gauge                              | Included                                                      |                    |                      |                                     |          |
| Off load tap changer                               | Included                                                      |                    |                      |                                     |          |
| Pressure relief valve                              | Included                                                      |                    |                      |                                     |          |
| Oil filling tube                                   | Included                                                      |                    |                      |                                     |          |
| Drain valve with sampler                           | Included                                                      |                    |                      |                                     |          |
| Nitrogen blanket                                   |                                                               |                    | Included             |                                     |          |
| 5 kVA single-phase auxiliary transformer (120 Vac) |                                                               |                    | Included             |                                     |          |
| 40 kVA three-phase auxiliary transformer (480 Vac) |                                                               | Opti               | onal / additional co | ost                                 |          |
| Applicable Standards                               |                                                               |                    |                      |                                     |          |

Specifications may vary per project based on engineering design.



### GREENWOOD

GSI DEVELOPMENT CORPORATION

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

134 East 40th Street New York, New York 10016

Phone: 519-804-9163 Toll Free: 1-866-961-8654

DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #5:                    | DATE:            |
|-----------------------------|------------------|
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-202 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-202 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-202 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-202 |

| PROJECT:          | TRI-COUNT          | Y 5 MW SOLA     | R PROJECT        |
|-------------------|--------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVEL          | OPMENT CO       | RPORATION        |
| TITLE:            | MV VOLT TR         | ANSFORMER       | SKID SPECS       |
| SCALE:            | N                  | OT TO SCALE     |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHE                | ET NO.          | REVISION         |
| E604              | 1                  | of 1            | 4                |
|                   |                    |                 |                  |



A PROJECT DIRECTORY E-605 NTS

### INVERTER#

INSTALL ON ALL EACH INVERTER

DAS MAIN ENCLOSURE

INSTALL ON DAS MAIN ENCLOSURE

DAS WEATHER ENCLOSURE

INSTALL ON DAS MAIN ENCLOSURE

STATION SERVICE TRANSFORMER #

INSTALL ON EACH STATION SERVICE TRANSFORMER

INV#

INSTALL ON ALL SWITCHBOARD BREAKERS TO DELINEATE CORRESPONDING INVERTER. ALL STATION SERVICE PANELBOARD BRANCH BREAKERS TO BE LABELLED SIMILARLY.

B EQUIPMENT LABELS E-605 NTS

### SWITCHBOARD#

INSTALL ON ALL EACH SWITCHBOARD

### STATION SERVICE PANELBOARD #

INSTALL ON EACH STATION SERVICE PANELBOARD

DAS METER ENCLOSURE

INSTALL ON DAS METER ENCLOSURE

### FIBER ENCLOSURE

INSTALL ON FIBER STORAGE ENCLOSURE

ROW#

INSTALL AT BOTH ENDS OF EACH RACKING TABLE ROW FOR WAYFINDING

### PHOTOVOLTIAC SYSTEM DC DISCONNECT

| OPERATING CURRENT      | 343.2Adc    | OPERATING CURRENT       | 1985.5A |
|------------------------|-------------|-------------------------|---------|
| OPERATING VOLTAGE      | 867Vdc      | OPERATING VOLTAGE       | 800V    |
| MAXIMUM SYSTEM VOLTAGE | 11861.11Vdc | INSTALL ON SWITCHBOARDS |         |

**INSTALL ON 60 INVERTERS** 

MAXIMUM CURRENT

### PHOTOVOLTIAC SYSTEM DC DISCONNECT 360.36Adc **OPERATING CURRENT** 867Vdc **OPERATING VOLTAGE** MAXIMUM SYSTEM VOLTAGE 1186.11Vdc MAXIMUM CURRENT 477.4875Adc

454.75Adc

**INSTALL ON 24 INVERTERS** 

### PHOTOVOLTIAC SYSTEM INVERTER AC CABINET

| OPERATING CURRENT | 180.5A |
|-------------------|--------|
| OPERATING VOLTAGE | 800V   |

INSTALL ON ALL INVERTER AC CABINETS

### PHOTOVOLTIAC SYSTEM AC DISCONNECT

| * | OPERATING CURRENT | 180.5A |
|---|-------------------|--------|
|   | OPERATING VOLTAGE | 800V   |

INSTALL ON ALL PANELBOARD AC BREAKERS WITHIN THE SWITCHBOARDS

C EQUIPMENT OPERATING LABELS AND SHOCK HAZARD LABELS

### PHOTOVOLTIAC AC SWITCHBOARD

| OPERATING CURRENT | 1985.5A |
|-------------------|---------|
| OPERATING VOLTAGE | 800V    |

### WARNING

ARC FLASH HAZARD - 1500VDC

**INSTALL ON ALL INVERTERS** 



### WARNING

### **ELECTRIC SHOCK HAZARD**

THE DC CONDUCTORS OF THIS PHOTOVOLTIAC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED

INSTALL ON ALL INVERTERS WITHIN CLEAR VISION OF DC INPUT CONNECTIONS



### WARNING

### ELECTRIC SHOCK HAZARD

DO NOT TOUCH TERMINALS TERMINALS ON BOTH THE LINE AND LOAD SIDE MAY BE **ENERGIZED IN THE OPEN POSITION** 

**INSTALL ON ALL INVERTERS** 



### WARNING

THIS EQUIPMENT IS FED BY MULTIPLE SOURCES TOTAL RATING OF ALL OVERCURRENT DEVICES EXCLUDING MAIN SUPPLY OVERCURRENT DEVICE SHALL NOT EXCEED AMPACITY OF THE BUS BAR

INSTALL ON ALL SWITCHBOARDS & STATION SERVICE PANELBOARDS



### **GREENWOOD**

New York, New York 10016

GSI DEVELOPMENT CORPORATION CANADA: 140 Foundry Street, Unit A 134 East 40th Street

Baden, ON N3A 2P7 Phone: 519-804-9163 Toll Free: 1-866-961-8654

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

### NOTES:

PROPERTY ADDRESS: 7N904 IL-25, SOUTH ELGIN, IL 60177

- 1. LAMACOIDS SHALL BE INSTALLED IN ACCORDANCE WITH
- THE LOCAL/MUNICIPAL AFFAIRS INTERPRETATIONS. 2. ALL LABELS TO COMPLY WITH ANSI STANDARDS FOR PROPER TEXT SIZE (7mm MINIMUM), DESIGN, ETC.
- 3. ADDITIONAL LABELS MAY BE REQUIRED BY LOCAL AHJ AND/OR UTILITY. CONTRACTOR TO PROVIDE ALL REQUIRED LABELS.
- 4. PROVIDE 20 SPARE LAMACOIDS FOR ALL LAMACOIDS SHOWN IN DETAIL C.

### PRELIMINARY - NOT FOR CONSTRUCTION

### LEGEND:

- PROPERTY BOUNDARY
- PROJECT BOUNDARY
- --- PROJECT FENCE EXISTING FENCE
- GRAVEL ACCESS ROAD (20ft/6.1m)
- PV TABLES

TRANSFORMER/INVERTER BLOCK

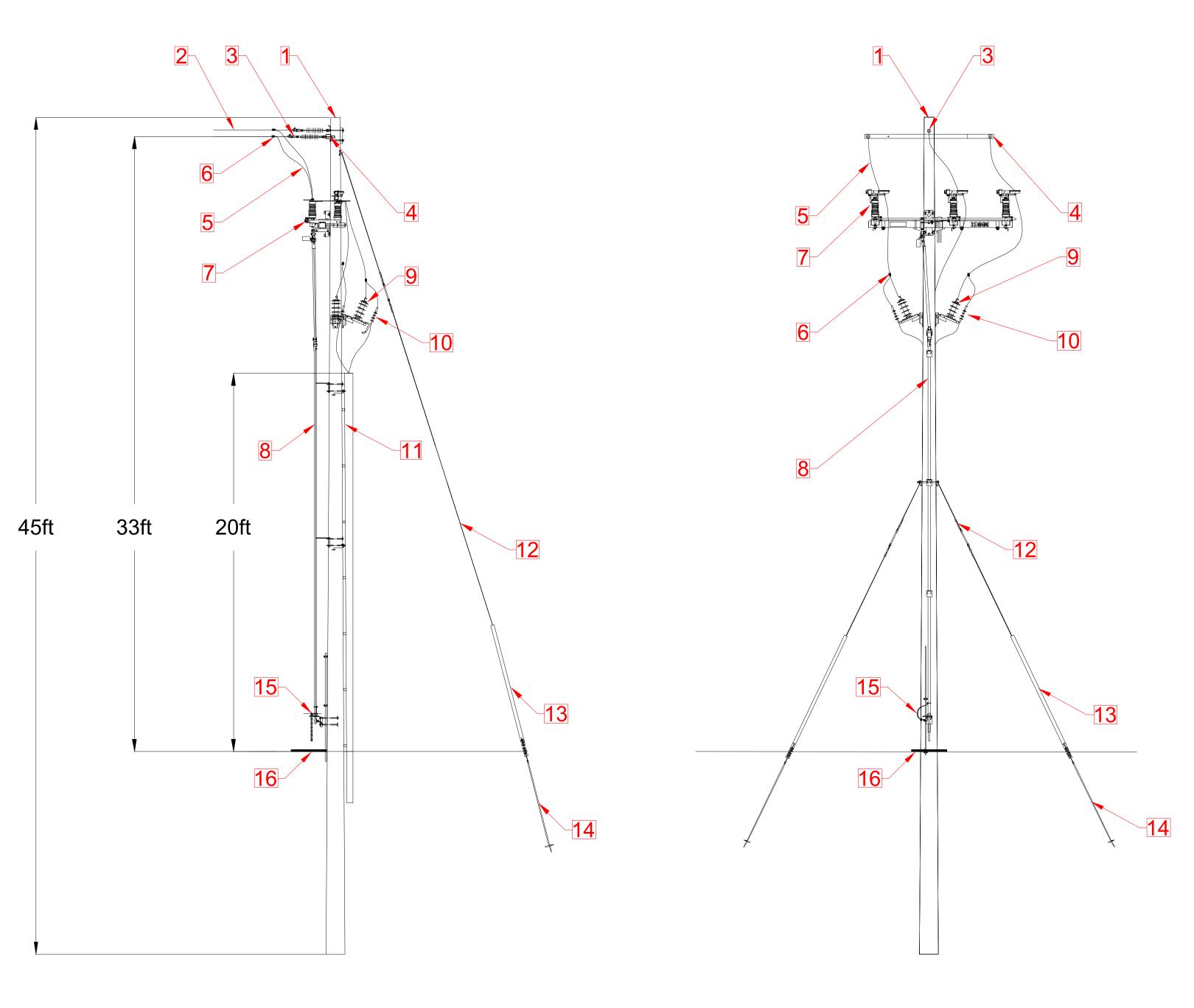
- INVERTER
- 12.5 kV FEEDER LINE W7931 (UTILITY)
- --- 15kV CABLE
- POLES & OVERHEAD LINES (SEE E100 SH 3 DETAIL) NO BUILD AREA - WETLAND w/30FT SETBACK
- NO BUILD AREA PIPE/VENT w/10FT SETBACK
- APPROXIMATE POI LOCATION

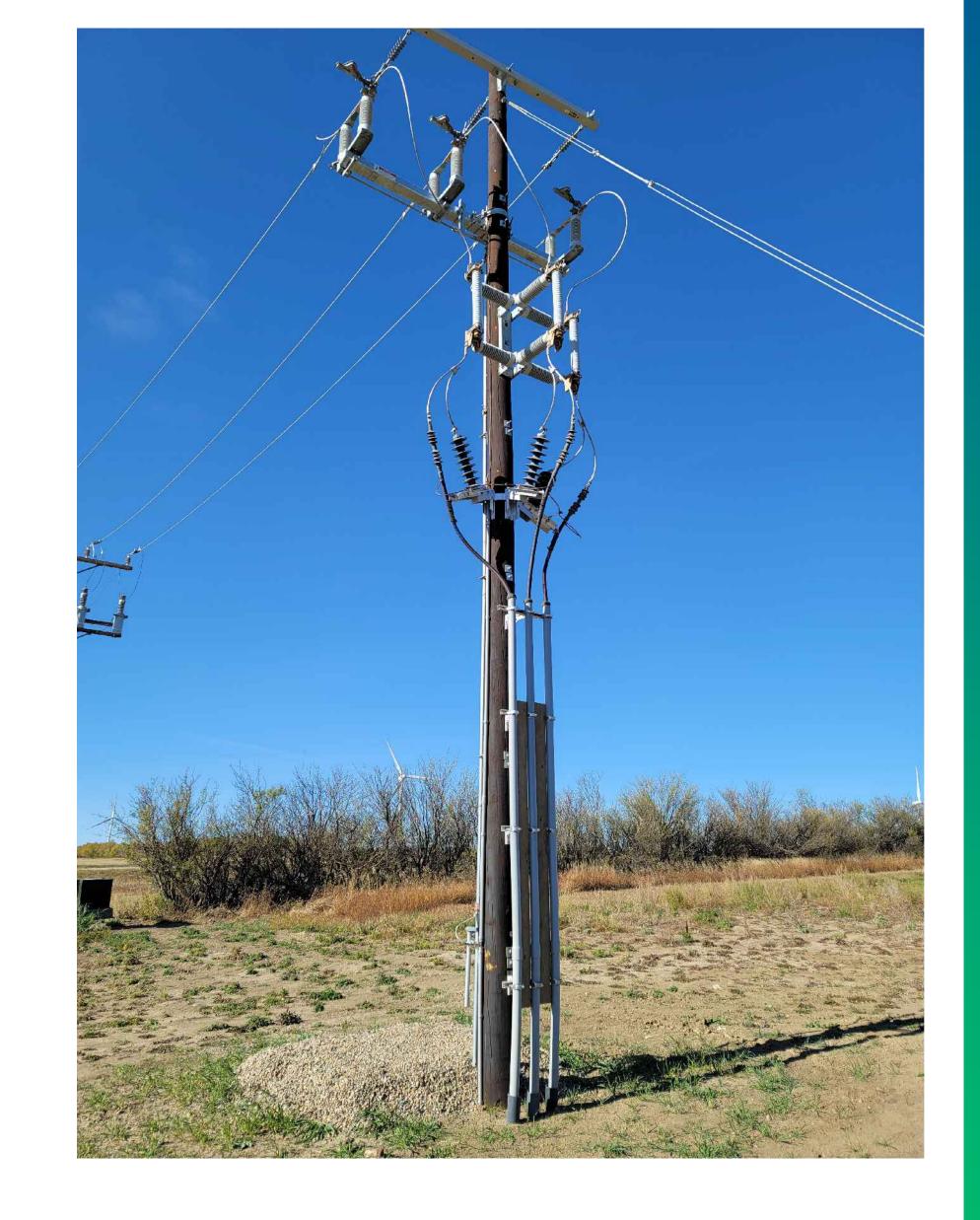
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |

ENGINEER'S SEAL:

PROJECT: TRI-COUNTY 5 MW SOLAR PROJECT GSI DEVELOPMENT CORPORATION

TITLE: LV WARNING LABELS & LAMACOIDS


SCALE: NOT TO SCALE


DRAWN HEATHER DESIGNED KYLE

BY: EDGINTON SPITTAL DWG. NO. SHEET NO. **REVISION** 

E605 1 of 1









| (A.1) | LOAD BREAK SWITCH POLE |
|-------|------------------------|
| E-701 | FRONT VIEW             |

|              | LOAD BREAK SWITCH POLE                                |                 |                                                                                |  |
|--------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------------------|--|
| EQUIPMENT ID | DESCRIPTION                                           | EQUIPMENT<br>ID | DESCRIPTION                                                                    |  |
| 1            | 45 FT CLASS 2 WOOD POLE                               | 9               | SURGE ARRESTER<br>(SEE SLD FOR KV/KVMCOV RATINGS)                              |  |
| 2            | ACSR                                                  | 10              | STRESS CONE TERMINATIONS                                                       |  |
| 3            | CROSS ARM INSULATORS                                  | 11              | PVC CONDUIT (SIZE TBD)                                                         |  |
| 4            | STEEL CROSS ARM                                       | 12              | GUY WIRE                                                                       |  |
| 5            | DROP LEADS<br>(SEE SLD FOR CONDUCTOR SIZING - AAC)    | 13              | YELLOW GUARD GUY                                                               |  |
| 6            | AMPACT WEDGE PRESSURE CONNECTORS (OR EQUIV.)          | 14              | ANCHOR                                                                         |  |
| 7            | LOAD BREAK SWITCH (S&C OMNIRUPTER OR EQUIV.)          | 15              | LOAD BREAK SWITCH HANDLE w/KEY INTERLOCK PROVISIONS (S&C OMNIRUPTER OR EQUIV.) |  |
| 8            | LOAD BREAK SWITCH OPERATING<br>PIPE (TO BE FIELD CUT) | 16              | GROUND MAT                                                                     |  |



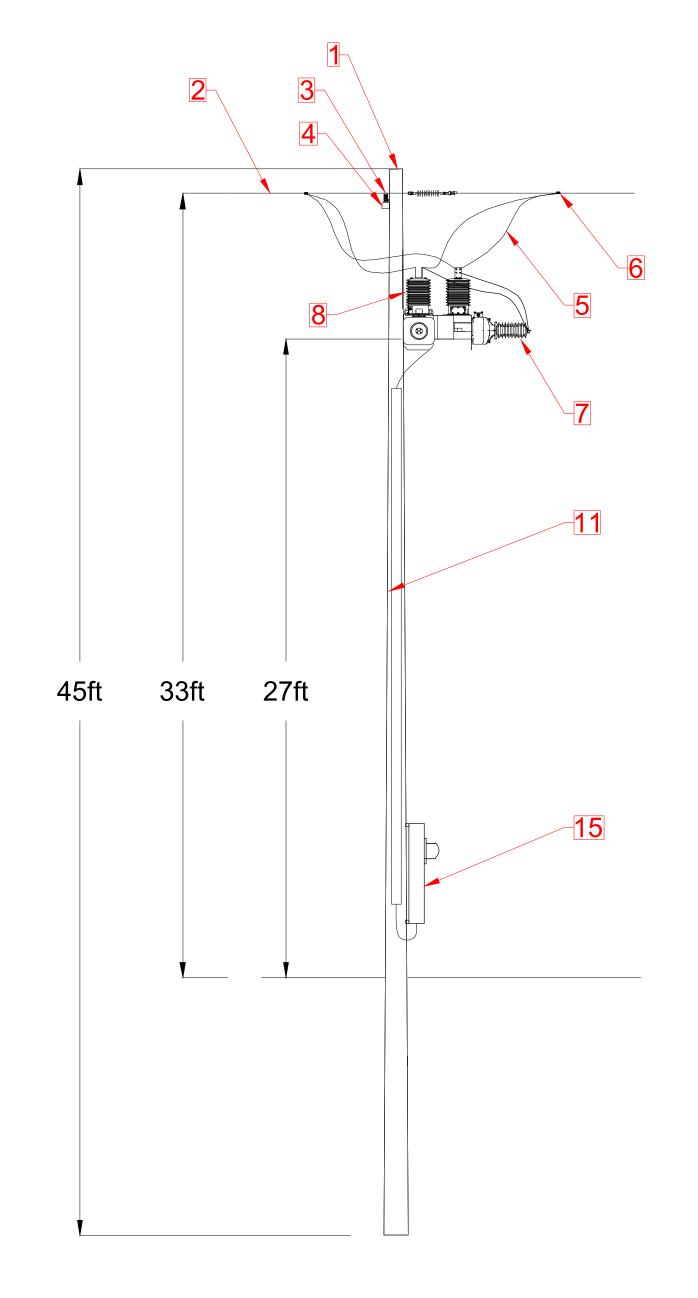
CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

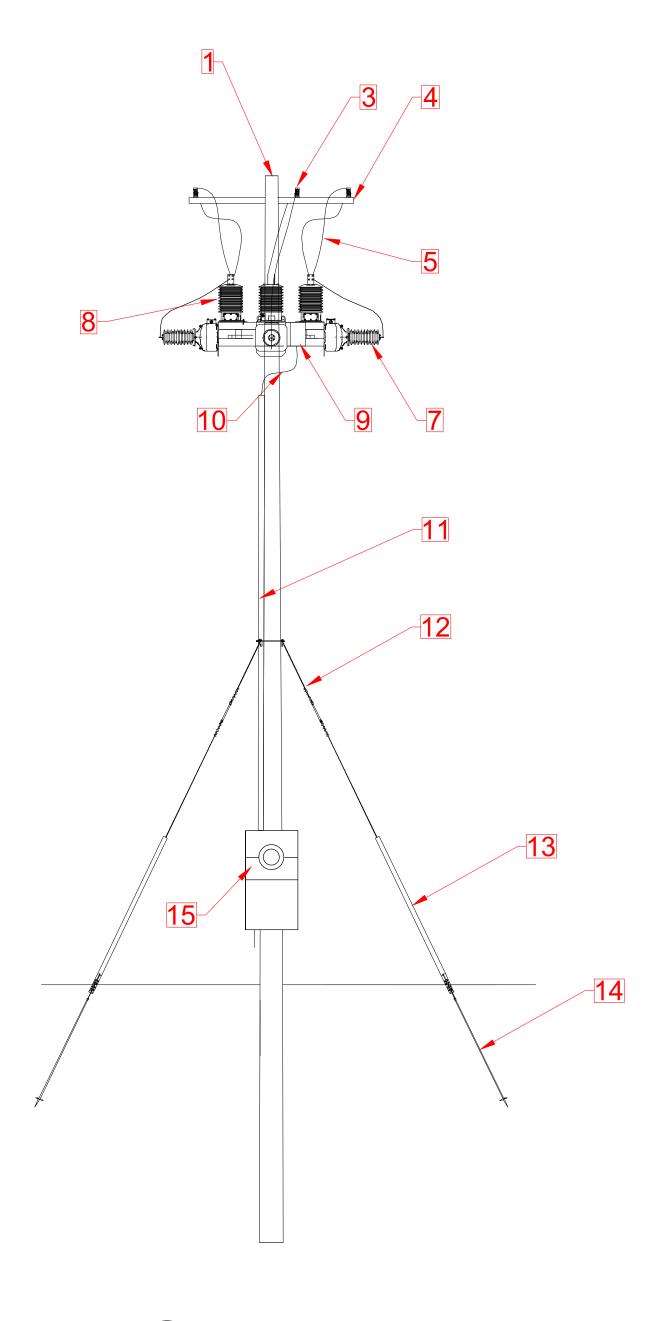
Phone: 519-804-9163

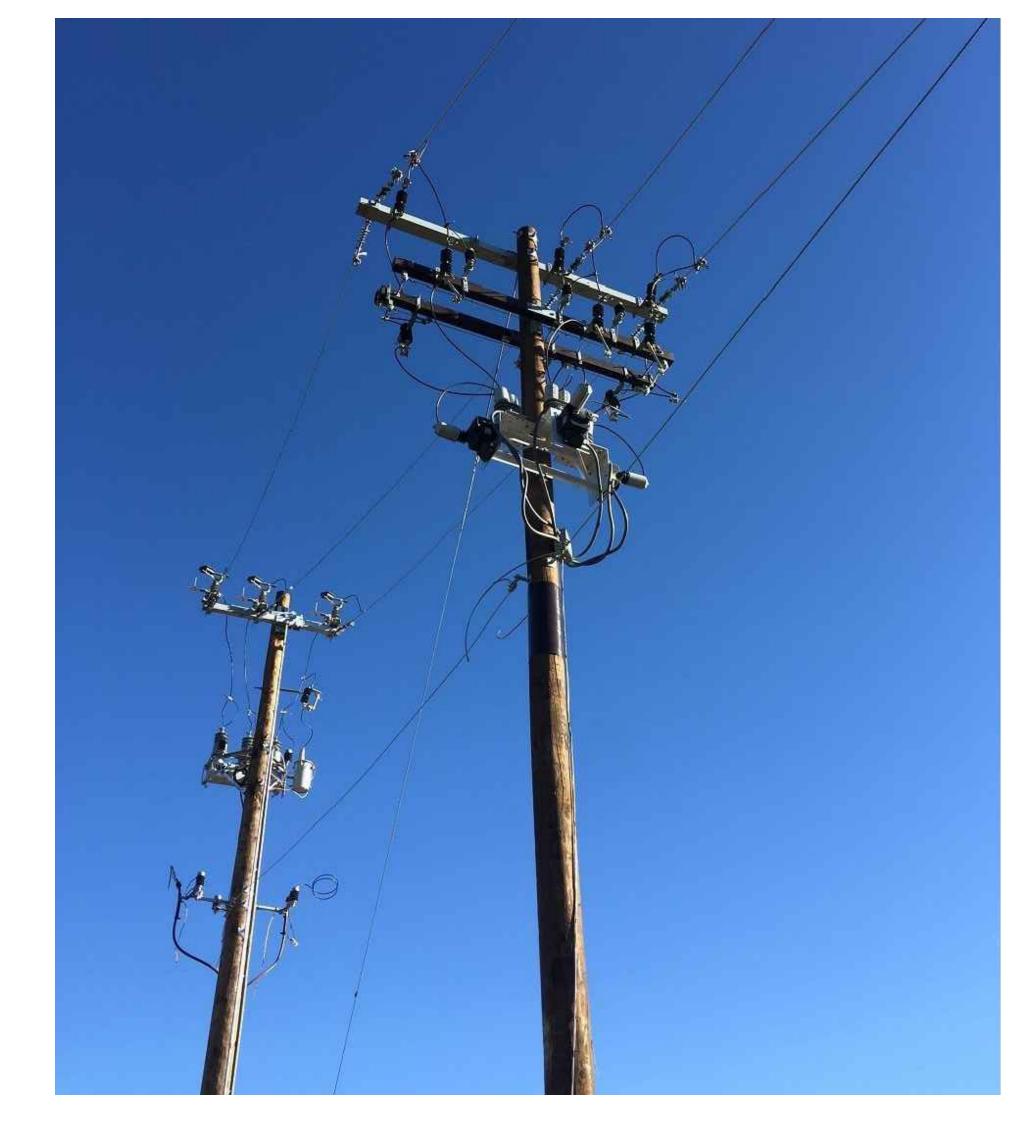
134 East 40th Street New York, New York 10016

### Toll Free: 1-866-961-8654 DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.


### NOTES:


- 1. METALLIC NON-CURRENT CARRYING
  EQUIPMENT COMPONENTS TO BE
  GROUNDED BY #4 AWG BARE COPPER WIRE
  FOR INSTALLATIONS UNDER 27.6kV AND #1/0
  AWG BARE COPPER FOR INSTALLATIONS UP
  TO 44kV.
- 2. POLE GROUND WIRE TO BE PROTECTED BY NON-METALLIC GUARD AND EXTEND TO PAST BASE OF POLE TO PROTECT CABLE FROM MECHANICAL DAMAGE.
- 3. BARE COPPER WIRE TO BE CONNECTED TO GROUND MAT/GROUND GRID IF AVAILABLE, OTHERWISE GROUND WIRE TO BE SECURED TO QTY 1 INSTALLED 10 FT x 3/4" COPPER GROUND ROD.


### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #5:                    | DATE:             |
|-----------------------------|-------------------|
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |

| PROJECT:          | TRI-COUNT                        | Y 5 MW SOLA     | R PROJECT        |
|-------------------|----------------------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION      |                 |                  |
| TITLE:            | MV SET<br>LOAD BREAK SWITCH POLE |                 |                  |
| SCALE:            | NOT TO SCALE                     |                 |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL               | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHEET NO.                        |                 | REVISION         |
| E701              | 1 of 1                           |                 | 4                |









C.1 METERING POLE FRONT VIEW

|                 | METE                                               | RING POLE       |                                                         |
|-----------------|----------------------------------------------------|-----------------|---------------------------------------------------------|
| EQUIPMENT<br>ID | DESCRIPTION                                        | EQUIPMENT<br>ID | DESCRIPTION                                             |
| 1               | 45 FT CLASS 2 WOOD POLE                            | 9               | INSTRUMENT TRANSFORMER WIRING<br>CABINET                |
| 2               | ACSR                                               | 10              | INSTRUMENTATION WIRING                                  |
| 3               | CROSS ARM INSULATORS                               | 11              | PVC CONDUIT (SIZE TBD)                                  |
| 4               | STEEL CROSS ARM                                    | 12              | GUY WIRE                                                |
| 5               | DROP LEADS<br>(SEE SLD FOR CONDUCTOR SIZING - AAC) | 13              | YELLOW GUARD GUY                                        |
| 6               | AMPACT WEDGE PRESSURE CONNECTORS (OR EQUIV.)       | 14              | ANCHOR                                                  |
| 7               | VOLTAGE TRANSFORMERS                               | 15              | METER BASE & GLOBE (SPECS TO BE CONFIRMED WITH UTILITY) |
| 8               | CURRENT TRANSFORMERS                               |                 |                                                         |



CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

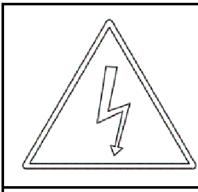
Toll Free: 1-866-961-8654

134 East 40th Street New York, New York 10016

### DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

### NOTES:


- 1. METALLIC NON-CURRENT CARRYING
  EQUIPMENT COMPONENTS TO BE
  GROUNDED BY #4 AWG BARE COPPER WIRE
  FOR INSTALLATIONS UNDER 27.6kV AND
  #1/0 AWG BARE COPPER FOR
  INSTALLATIONS UP TO 44kV.
- 2. POLE GROUND WIRE TO BE PROTECTED BY NON-METALLIC GUARD AND EXTEND TO PAST BASE OF POLE TO PROTECT CABLE FROM MECHANICAL DAMAGE.
- 3. BARE COPPER WIRE TO BE CONNECTED TO GROUND MAT/GROUND GRID IF AVAILABLE, OTHERWISE GROUND WIRE TO BE SECURED TO QTY 1 INSTALLED 10 FT x 3/4" COPPER GROUND ROD.
- 4. INSTRUMENTATION/CONTROL WIRING TO BE INSTALLED IN LIQUID TITE NON-METALLIC FLEXIBLE CONDUIT WHEN LEAVING CONDUIT ABOVE GRADE TO PROTECT FROM MECHANICAL DAMAGE.

### PRELIMINARY - NOT FOR CONSTRUCTION

| ENOMEEDIO OF AL             |                   |
|-----------------------------|-------------------|
| REV. #5:                    | DATE:             |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |

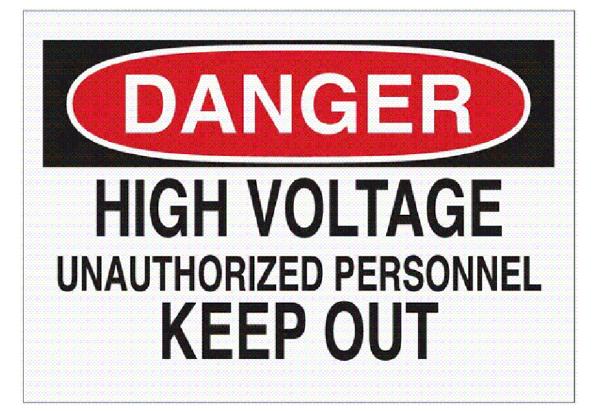
| PROJECT:          | TRI-COUNT                   | R PROJECT            |                  |
|-------------------|-----------------------------|----------------------|------------------|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION |                      |                  |
| TITLE:            | MET                         | MV SET<br>ERING POLE |                  |
| SCALE:            | NOT TO SCALI                |                      |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL          | DESIGNED<br>BY:      | KYLE<br>EDGINTON |
| DWG. NO.          | SHEET NO.                   |                      | REVISION         |
| E703              | 1 of 1                      |                      | 4                |
|                   |                             |                      |                  |

### **INTERFACE TRANSFORMER WARNING LABEL**



### INTERFACE TRANSFORMER

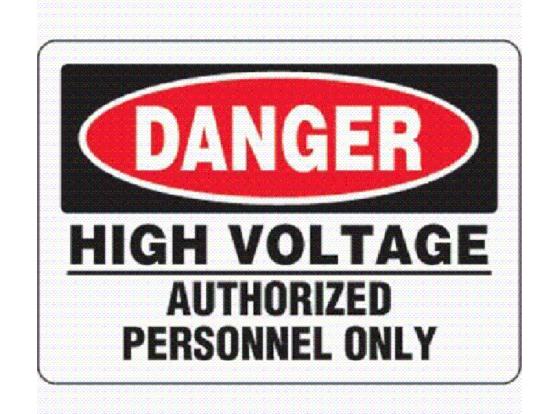
WARNING


DO NOT OPERATE TAP CHANGERS IN OUTDOOR CONDITIONS BELOW -20°C

INSTALLED ON ALL TRANSFORMERS

| INTERFACE TRANSFORMER #1    |         |  |
|-----------------------------|---------|--|
| INTERFACE TRANSFORMER #1    | 2500kVA |  |
| OPERATING PRIMARY VOLTAGE   | 12.5kV  |  |
| OPERATING SECONDARY VOLTAGE | 600V    |  |

| INTERFACE TRANSFORMER #2    |         |  |
|-----------------------------|---------|--|
| INTERFACE TRANSFORMER #1    | 2500kVA |  |
| OPERATING PRIMARY VOLTAGE   | 12.5kV  |  |
| OPERATING SECONDARY VOLTAGE | 600V    |  |


### DANGER HIGH VOLTAGE SIGNS (FENCE)



NOTES: DANGER HIGH VOLTAGE signs shall be placed on perimeter fence as required by Rule 26-010

- i) located immediately adjacent to the locks on all access gates;
- ii) installed at all outside corners formed by the fence perimeter; and
- iii) installed at intervals not exceeding 15 m of horizontal distance.

### LOAD BREAK SWITCH POLE



### TRANSFORMER/SWITCHGEAR/REVENUE METERING CABINET/LOAD BREAK SWITCH WARNING LABELS



INSTALLED ON ALL TRANSFORMERS, SWITCHING CUBICLE, REVENUE METERING CABINET AND LOAD BREAK SWITCH

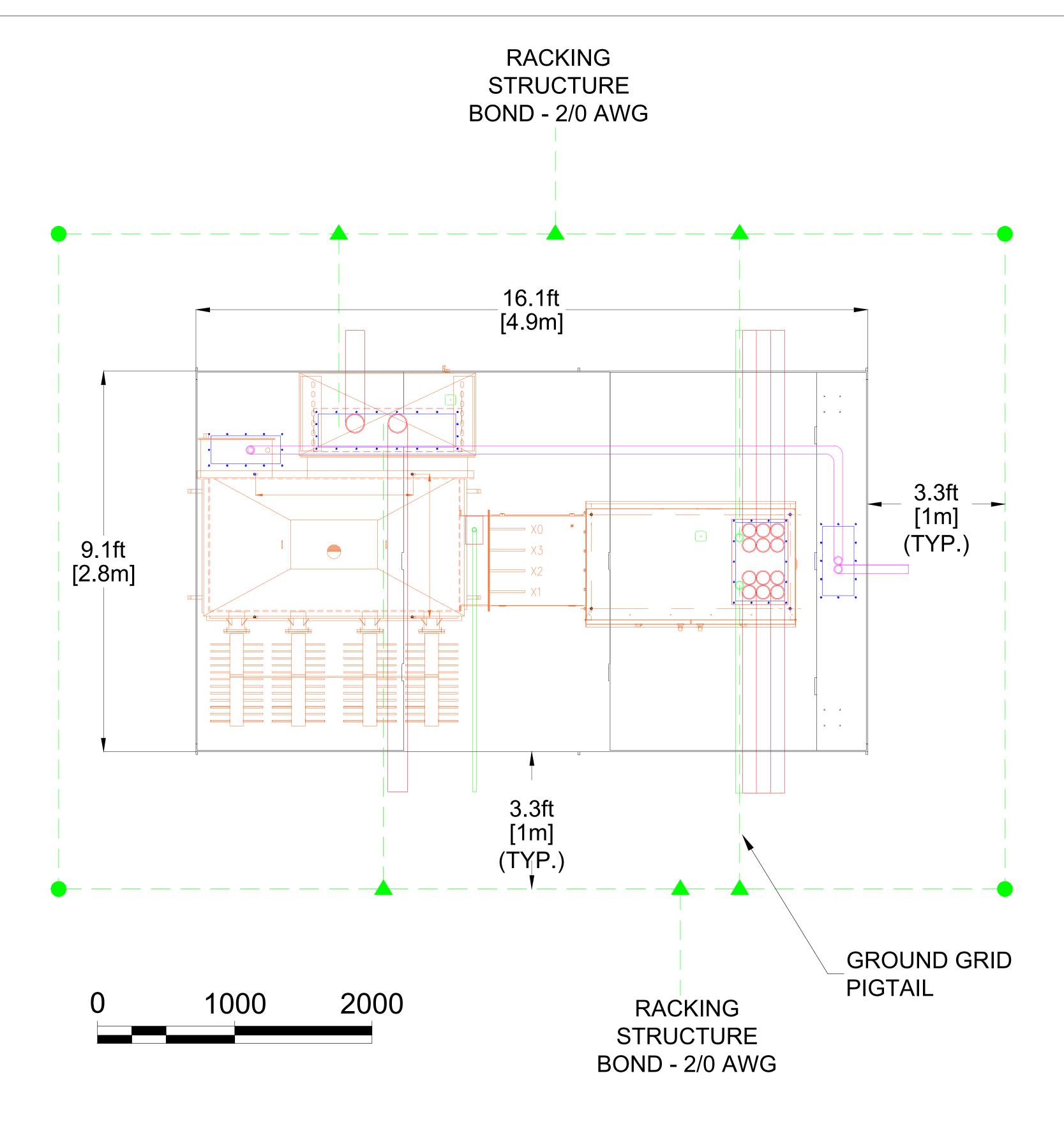


### GSI DEVELOPMENT CORPORATION

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7 Phone: 519-804-9163

134 East 40th Street New York, New York 10016

Toll Free: 1-866-961-8654
DISCLAIMER:


All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| REV. #5:                    | DATE:             |
| ENGINEER'S SEAL:            |                   |

| PROJECT:          | TRI-COUNT                            | Y 5 MW SOLA     | R PROJECT        |
|-------------------|--------------------------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVE                             | _OPMENT COI     | RPORATION        |
| TITLE:            | MV SET<br>WARNING LABELS & LAMACOIDS |                 |                  |
| SCALE:            | NOT TO SCALE                         |                 |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL                   | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHEET NO.                            |                 | REVISION         |
| E704              | 1 of 1                               |                 | 4                |
|                   |                                      |                 |                  |



### NOTES:

- 1. CONTRACTOR TO OBTAIN AND CONFIRM EXACT LOCATION FOR EQUIPMENT GROUNDING FROM ENGINEER PRIOR TO INSTALLATION.
- 2. GROUNDING GRID TO BE SUPPLIED AND INSTALLED IN COMPLIANCE WITH ONTARIO ELECTRICAL CODE.
- 3. GROUND RODS SHALL BE INSTALLED WITH THEIR TOPS BURIED A MINIMUM OF 50MM BELOW ROUGH GRADE AND CONNECTED TO GROUND GRID.
- 4. 2/0 AWG BARE CU GROUND GRID CONDUCTOR TO BE INSTALLED 450MM BELOW ROUGH GRADE.
- 5. CONTRACTOR TO REVIEW VENDOR DRAWINGS AND CONFIRM LOCATION OF EQUIPMENT GROUNDING POINTS PRIOR TO INSTALLING PIG TAILS.
- 6. CONTRACTOR TO ENSURE PIGTAILS ARE PROTECTED IN PVC CONDUIT AS THEY RISE INTO THE EQUIPMENT AND VERIFY THAT THE PIGTAILS HAVE SUFFICIENT LENGTH TO TIE INTO THE EQUIPMENT.
- 7. CONTRACTOR TO ADD 100MM LAYER OF SUBSTATION ROCK THAT EXTENDS 1000MM PAST GROUND GRID.



### GSI DEVELOPMENT CORPORATION

CANADA: 140 Foundry Street, Unit A Baden, ON N3A 2P7

Phone: 519-804-9163

134 East 40th Street New York, New York 10016

# Toll Free: 1-866-961-8654 DISCLAIMER:

All work shall be performed in compliance with local and federal standards. Contractor responsible for verifying all dimensions. Drawings not to be reproduced or used without GSI approval.

NOTES:

### PRELIMINARY - NOT FOR CONSTRUCTION

### LEGEND:

- ▲ CABLE TO CABLE C-CRIMP YGHCH29C26
- 3048MM X 19MM GROUND ROD & GROUND ROD CONNECTOR YGLR29C34
- --- #2/0 AWG BARE COPPER CONDUCTOR
  GROUNDING PIGTAIL CONDUIT

| REV. #1: PRELIMINARY DESIGN | DATE: 13-APR-2023 |
|-----------------------------|-------------------|
| REV. #2: ISSUED FOR REVIEW  | DATE: 04-APR-2024 |
| REV. #3: ISSUED FOR REVIEW  | DATE: 24-SEP-2025 |
| REV. #4: ISSUED FOR REVIEW  | DATE: 13-NOV-2025 |
| RFV #5 <sup>·</sup>         | DATE.             |

| PROJECT:          | TRI-COUNT                       | Y 5 MW SOLA     | R PROJECT        |
|-------------------|---------------------------------|-----------------|------------------|
| PROJECT<br>OWNER: | GSI DEVELOPMENT CORPORATION     |                 |                  |
| TITLE:            | MV SET<br>AC PAD GROUNDING GRID |                 |                  |
| SCALE:            | NOT TO SCALE                    |                 |                  |
| DRAWN<br>BY:      | HEATHER<br>SPITTAL              | DESIGNED<br>BY: | KYLE<br>EDGINTON |
| DWG. NO.          | SHEET NO.                       |                 | REVISION         |
| E705              | 1 of 1                          |                 | 4                |